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PREFACEK

The 1ligquid crystal is often referred to as a fourth state of
matter in that it appears in beitween the solid and the liquid
states as a thermodynamically distinct phase. This somewhat self-
contradicting name "ligquid crystal"” was indeed coined after the
fact that due to thisg intermediate nature, the liguid crystals can
exhibit at the same time the anisotropic properties, which are
characteristic to sclid state, and the fiuidity to the liquid
state. This marvelous state of matter is relatively a new comer to
our recognition, having been known for only about a century.
During this short hisgtory, however, more than 10,000 liquid
crystalline subgtances have been found or synthesized, more than
10 different liquid crystalline phases identified, and a number of
their fundamental physical and chemical properties explained. Most
gurprisingly, liquid ¢rystals have become an indispensable
ingredient of modern industry during the last two decades, mainly
as a material for electro-optic displays, and, today, their use
is expanding at an even more rapid pace.

I+ has been known from the very early days of ligquid crystals
that the surface or interface of 1liguid crystals plays a
gignificant role in determining their appearance when viewed with
pelarized 1light. In liquid crystals, indeed, the state of a
surface can affect the molecular arrangement over, say, 1 mm! away
from their surfaces. This is undoubtedly one of the unigque
features of a liquid crystalline phase; in solids, molecules are
too strongly correlated with each other to be appreciably
influenced by the surface state, while in the isotropic 1liquids,
molecules are not correlated at all over a macrosgcopic distance,
The intermediate strength of the molecular correlations in liquid

crystals is making their surface properties that remarkable.



The fact that the molecular arrangement, in particular the
alignment within a liguid crystal can be controlled to a large
extent by the boundary conditions has found wide applications for
both scientific and industrial purposes to obtain liquid crystal
preparations with a prescribed alignment property; a well-defined
alignment is a prerequisite for reliable measurements of physical
parameters and for operation of liquid crystal displays. So,
ligquid crystal scientists have, intentionally or unintentionally,
always had to be exceptionally familiar and concerned with the
phenomena occurring at their surfaces. Degpite thege encouraging
circumstances, the uanderstanding of liquid crystal surfaces has
been unduly impeded, when compared with the level of uhderstanding
of their bulk counterparts. In recent vears, however, witnessing
the certain maturation of the field of liquid crystals, on the one
"hand, and the rise of interegt in other fields into surfaces and
thin film processes, on the other, an increasing number of
theoretical and experimental studies have began to be directed to
seriocous exploration of the ligquid c¢rystal surfaces. Those range
from the characterization, both macroscopic and microscopic, of
the surface-~induced alignment of 1liguid crystals to the
investigation of novel phase transitions and critical phenomena at
surfaceg and in thin liquid c¢rystalline films. And their
connections with the findings in other fields are also being
extensgively exploited. Furthermore, the growing interest into the
use of ferroelectric liquid crystals and more generally into
aligned organic f£ilms ig reqguiring to open up a new frontier in
the practical applications of surface-alignment phenomena.

In his famous text book, The Physics of Liguid Crystals,

L

P.G. de Gennes notes ...yYet many experiments which could have

been done thirty vyears agoe are only now being performed,"” in



connection with the state of the whole field of liquid crystals.
Thig statement even now appliegs to most of the current studies on
liquid c¢rystal surfaces. I am not, however, to imply that the
consequences of those studies should be out of date, rather I
understand, just as in the days when de Gennes wrote the book,
that fundamental concepts and facts are now emerging in this
intriguing £field of research. In this article, I wish to give a
comprehensgive account of this emergent field, mainly foliowing the
works of the author performed in the last seven years in the
Electrotechnical Laboratory. My intention here is primarily to
figure out physical principles behind the alignment of liquid
crystals at their surfaces. Consequently, a substantial emphasis
of this thesis will be placed on the theoretical aspects of the
interfaces of nematics. In the course of expositions, however,
emphasis will also be laid on experimental techniques in use for
ligquid crystal surfaces, because, in my opinion, the development
of such techniques has always been and is playing a decisive role
in making up the current status of the field, and vice versa.

As made c¢clear from time to time through the history of
science, an ab initig understanding of any macroscopic phenomenon
is realized only after an appropriate phenomenological description
becomes available; and it may be even more so, as the system in
question becomes more and more complex. Unfortunately, however,
there has ever been nco systematic effort to develop a
phenomenology of the nematic interface, rneither in theory nor in
experiments. It is my ambition of writing this thesis to make a
contribution in this direction. This is the reason why I included
the term "phenomenoclogy” in the title. As a matter of course, I
am not necessarily satisfied with the result, and much is
certainly 1left to be done. But I am convinced that at least a

direction of future researches could be presented.



The preferential orientation of organic molecules at an
interface 18 guite a universal phenomenon which manifests itself
in wvarious ordered structures in nature such as bioclogical
membranes, scap films, micelles and vesgicles of amphiphilic
molecules, Langmuir-Blodgett films, epitaxially grown layvers, etc.
Today, there is not s0o much distinction between basic and applied
works in these field. The ocutcome of basgic researches are soon
reflected in applied area, and applied works are feeding the
thought of basic researchers. The understanding of the surface
alignment of nematic ligquid crystals is of course important in its
own right, but it will be even more sgignificant in other fields in
the long run. It is my great pleasure if this thesis is of some
value to those who are working in these fields.
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Chapter 1

INTRODUCTION

1.1 Motivation

The surface or interface of matter is a geometrically
marginal region wherein its, otherwise uniform, physical and
chemical properties vary almost abruptly. Despite this
geometrical limitation, it is not at all literally marginal; but
known are a number of phenomena which are essentially connected
with the presence of an interface: wetting, adhegion, lubrication,
emulsification, adsorption, catalysis, crystalization and
vaporization, vacuum deposition, biological processes at
membranes, and further to name but a few, electrode processes and
electron transport across semiconductor contacts.

Since the days of Young in early 19%th century who, for the
first tims, recognized the significance of a surface for
egtablishing mechanical equilibrium in liguid systeme, the study
of surface and interface has constituted a large branch of
materials science, Today, hecause of that wide range of relevant
phenomena, as listed above, and their technological and scientific
import, we are experiencing even greater impetug for understanding
the physics and chemistry underlying the interfacial processes.

The surface of nematic liquid c¢rystals occupies an especially
impressing position in the map of all the surfaceg and interfaces
found in nature. This is in almcst the same sense that a ligquid
crystal is of interest as a phase in between the crystaliine solid
and the ligquid states. More specifically, the nematic surface or
interface 1is, on the one hand, flexible enough to assure easy
access to thermodynamic equilibrium, yet on the other, hard enocugh

to impose preferential orientation on congtituent molecules,



thereby producing structural anisotropy which propagates far into
the bulk medium.

This long Eknown phenomenon, <c¢alled the "surface-induced
alignment” in 1liquid crystal parlance, 1is8 now of tremendous
technological significance in the production of 1liquid c¢rystal
displays, playing in a sense as essential a role as that of the
electro~optic effect itself in liquid crystals. Furthermore, the
current need for high speed, large area, and high information
density displays is opening up the introduction of novel operation
mechanisms as well as the use of new materials, for instance,
ferroelectric ligquid crystals, which 1is then making the
regquirement even more intense and wide ranged for the alignment of
liquid crystals on substrate surfaces. Along with this
technological facet, it appears worth pointing out that the
surfaces or thin films of liquid crystals offer an ideal sample to
test the theoretical predictions made in connection with the phase
transitions in lower dimensional and bounded systems.

From the surface scientific point of view, the origin of the
alignment of nematics at their surfaces is no different from that
of <characteristic orientational states adopted generally by
asymmetric molecules on liguid or so0lid surfaces; for example,
that occurring in Langmuir films on water, But what probably
makes it truly distinctive is the fact that this "microscopic”
anisotropy in molecular orientation is brought into a
"macroscopic” anisotropy by way of long-range orientational order
existing in nematics. 80 that the understanding of nematic
surfaces regquireg, among others, the understanding o¢f their
orientational properties.

The nematic surfaces are a kind of liquid surface: hence, it
is not at all surprising even though they lack microscopic
characterizations, as is today the case for ordinary liquids ¢to

which modern techniques such as electron microscopy, LEED, etc.



requiring ultra~high vacuum are largely inapplicable. However,
most regrettable about the nematic surfaces is the fact that they
are far from being adequately characterized even on the
macroscopic {(phenomenclogical) level, when compared with their
ordinary ligquid counterparts. Especially, in terms of their
orientational properties, even an appropriate theoretical
framework 1is8 not necesgsarily clear, on which such macroscopic
characterizations may be correctly done.

Tili the advent of liquid crystal displaye in late 1960's,
the orientational phenomena at nematic¢ surfaces were the subject
of only some gporadic gstudies. But in the last twoe decades,
gquite a few studies have been carried out, figuring out sonme
fundamental concepts and features of the surface-induced
alignment. I+ must at the same time be admitted, however, that a
large part of them were either too descriptive or too speculatvie
to give a c¢ocherent picture of the nematic surfaces on the
macroscopic level, In the present thesis, I wish to set forth
one possible scenario of how to draw a phenomenoleogical picture of
the nematic surfaces, starting from the thermodynamic basis of the
alignment at surfaces to some specific observations which appear
to be particularly illuminating the orientational properties of
the nematic surfaces.

As well known, the direction of alignment (called the
"director”}) and the orientational order are the key quantities
specifying the orientaticnal state of nematics. Conseguently, our
primary goal (as far as nematic sample 1is concerned) is to
elucidate "How"” and "Why" the director and the order are
influenced by surfaces, To ultimately answer the guestion of
"Why," on the one hand, one must take account of the detailed
molecular interactions and predict their macroscopic consegquences
to such an extent to be compared with experiments. This is nothing

but the aim of the condensed matter physics and chemistry as a



whole, and as far as structure formation in condensed phases is
concerned, we know at present few succesgsful example. But, on
the other, an answer to the former guestion may be greatly varying
in 4its accuracy, ranging from a mere description of single
observation to a presentation of a highly intercorrelated set of
observations which are unified to be consistent with each other.
What I try in this article is to answer the guestion of "How”™ in
the last sense as deeply ag possible. I believe only such an
endeavor will be a real asset for answering some day the guestion
of "Why."

1.2 Summary and Layout

Some chapters of this thesis are solely theoretical aiming at
¢creating a phenomenological framework for nematic interfaces, and
some are largely experimental devoted to the description of
specific observations and the experimental technigques needed.
Both are treated with equal emphasis as an indispensable and
complimentary ingredient for the present goal. In experimental
gsection, in particular, I have tried to select only such topics
that are thought to "primarily” reflect the orientational property
of the.nematic surface: namely, the order-disorder phenomena and
the sgtability of the orientation. Moreover, in order not to
obscure the point, the experimental results presented are mostly
those for a single nematic substance placed on two commonly used
aligning substrates, which are shown a posteriori to be embodying
oppositely extreme cases of surface-induced alignment.

In the rest of Chapter 1, a historical overview is given on
the surface-induced alignment phenomenon, followed by the
description of the current status of their applications.

Chapter 2 is a preparatory part, in which fundamental
properties of nematic liquidé crystals are compiled. In view of

the fact that the surface-induced alignment ig a phenomencon which



can be manifested and probed via the spatial configuration of the
director in the bulk phase, the Frank theory of curvature
elagsticity is expounded in detail to facilitate self-contained
expositions in later chapters. The nematic liquid crystal is one
of few examples whoge phase transition can be rather adequately
treated by a phenomencological theory. In view of the importance
of phenomencological description of nematics in later chapters, we
shall briefly review the Landau-de Gennes phenomenological theory
of the nematic-isotropic transition.

In Chapter 3, the fundamental concepts such as the pre-tiit
(the alignment direction), the anchoring strength (a measure of
the gtability of alignment), etc. are introduced, which are needed
for quantitative discusgion of the alignment at nematic gurfaces.
Furthermore, in order to show up the current status of this field,
the models and coniectures of the mechanism of alignment so far
proposed, though none of them has concrete experimental support,
are summarized.

Chapters 4 through 8 are the main part of this thesis;
Chapters 4 and 5 are theoretical, in which the nematic interfaces
are in turn treated thermodynamically and statistical
mechanically with a view to giving a basis for the
phenomenological unification of the interfacial properties of
nematics. In Chapter 4, the Gibbs surface thermodynamice 1is
extended to encompass nematic interfaces by taking into account
the orientational degrees of freedom of a nematic based on the
Gseen-Frank theoty of curvature elasticity. In s¢ doing, the
Gibkbs equation is generalized to a form which ig obviously related
to the pre-tilt angle and the anchoring strength. From this
generalized Gibbs equation follow several thermodynamic relations
which are to be used in later statistical mechanical treatments
and are to provide important insights intc the thermodynamic

gignificance of the temperature-, pressure~- or composition-



dependence of the pre-tilt angle and the anchoring strength,
Especially, a quasi-thermodynamic condition is derived for the
critical exponent when the pre-tilt or +the anchoring strength
exhibits some critical behavior in response to changes in those
environmental conditions.

Chapter 5 is in essence divided into two parts. The former
half is devoted to the derivation of some rigorous statistical
mechanical formulas for the interface boundary tension and the
anchoring strength at a hard wall-nematic interface, And in the
latter half, an approximate theory is developed based on the
(Landau-de Gennes type) van der Waals picture of the nematic
interface, regulting in some explicit expressions for the
interfacial tension, the contact angle, the anchoring strength,
ete., involving a few phenomenological parameters. As often the
case with rigorous statistical theories, the formulas obtained in
the former part are not convenient for quantitative calculations.
However, they serve as a conceptual basis for approximate
theories. At present, especially, we are allowed by virtue of a
variational property of the anchoring strength to observe a good
parallelism to exist throughout the thermodynamics, the rigorous
and the approximate statistical theories.

In Chapters 6 and 7, which are respectively concerned with the
*microscopic” and the "macroscopic" aspects of the orientationg at
nematic interfaces, some typical experimental observations of the
orientational phenomena are presented and discussed on the basis
of theoretical ground founded in former chapters,. As mentioned
already, those experiments were mostly done with respect teo an
interface between a single material, 4-n-pentyl-4'-cyanobiphenyl
{BCB), a typical room-temperature nematic ligquid crystal, and a
gsubgstrate which was ¢treated either by the rubbing or by the
obligue evaporation technigue. These surface treatments are known

ag the commonest techniques which are currently enjoying wide



industrial and laboratory applications to achieve uniform planar
alignment for use in 1liquid crystal devices,. Through the
exposition of the experimental results and their theoretical
analyses in Chapters 6 and 7, it will be made clear that those
alignment techniques are orienting nematic molecules based on very
different mechanisgsms, being in sharp contrast to the fact that
both technigques give rise to an apparently indistinguishable
alignment of good gquality for very wide range of nematic
substances.

Chapter 6 deals with the orientational order-disorder
phenomena associated with the nematic¢ interface. ¥irstiy, the
contact angle phenomena occurring at the line of contact of the
three phages, substrate, nematic, and isotropic, are considered.
As well known in surface science, the contact angle gives a direct
measure of the relative stability of the interfaces that meet at
the line, in terms of the interfacial tensions. At present, in
particular, it offers an estimate of the relative affinity of the
ordered and the disordered states to the substrate, which governs
the order-~disorder phenomena at their surfaces. Secondly, the
results of the wall-induced pretransitional birefringence
experiments are presented, which give a meagure of the gtrength of
the molecular orientation induced by the substrates by measuring
the local optical anisotropy in the nematic medium remaining near
the gsubstrate at temperatures above the nematic-igotropic
trangition point Tc. Finally examined 1is how the nematic-
isotropic transition should be modified as the thickness of the
nematic laver is decreased in beitween treated substrates; if the
gubstrate favors (disfavors) the nematic order, the transition
temperature will be enhanced (reduced) as the nematic thins.

A1l the results of those experiments done on the interface
between 5CB and a substrate treated either by the rubbhing or the

obligue evaporation technique point in one common direction as to



the state of orientational ordering at these interfaces: The
rubbed substrate tends to enhance the orientational order of the
nematic in the vicinity of substrate, while the obliguely
evaporated substrate does tend to destroy the ordering. It is
furthermore indicated that the microscopic ordering induced by the
rubbed substrate goes hand in hand with the macroscopic alignment
of the nematic director on the substrate, while the disordering
due to the obliquely evaporated substrate occurs qguite independent
of whether or not the substrate aligns the nematic over
macroscopic distance.

Chapter 7 is concerned with the following macroscopic
question: how stable ig the alignment of a nematic at an
interface? At first, the conventional technigues for measuring
the anchoring strength are reviewed with an emphasis on the
reliability and precision of thegse techniques, Next, the "high
elactric-field technique (HEFT)" developed by the present author
is described in detail and the factors affecting its results
discussed. The HEFT is not only an easy-to-use but a rather
reliable technique, in comparison with the conventional onesg, and
ia also useful to explore the complete functional dependence of
the nematic-substrate interfacial tension on the director
orientation.

The results of applications of the HEFT are presented,
including the temperature- and the director angle-dependences of
the anchoring strength, which were first obtained with this
technique. The temperature-dependences, especially the gquasi-
critical weakening of the anchoring strength at the 5CB-obligquely
evaporated Si0 substrate interface, are discussed based on the
thermodynamics and the Landau-de Gennes type theory of the nematic
interface developed, respectively, in Chapters 4 and &.

Chapter 8 is devoted to summary and conclusion with some

comments on the future perspective of the field and its



implicationg of the orientational phenomena at nematic surfaces
inte the production of oriented, or more generally ordered thin

£ilms of corganic molecules.

The alignment mechanisms of nematics on the rubbed and the
obliquely evapcorated substrates have always received much
attention, and some "coniectures” have indeed been proposed. And
teday, it is unhappily often believed without reflection that
(8emi-)microscopic grooves, in a broad sense, brought about by the
rubbing or the oblique evaporation process is responsible for both
cagses, As will be shown throughout this article, the alignment of
nematics on these substrates are not this simple, but has a number
of clear features which make them gquite distinct. On the rubbed
(polyvinylalcohol) substrate, the nematic assumes a higher
orientational order, a small contact angle, and a large anchoring
strength with negligible temperature~dependence, but on the
obliquely evaporated (SiO) substrate, it takes oppositely a lower
orientational order, a large contact angle, and a relatively small
anchoring strength with marked temperature-dependence. These are
properties that can not be easily reconclled on a simple
mechanistic view based on the groove model. If it is understood
through this thesis how c¢rucial and useful is to c¢ollect such
information that clearly signifies the difference of one alignment
from the other, I would say that at least a part of the present

goal should be reached.



1.3 Surface-induced alignment of nematic liquid crystals:

Historical overview

It is noew well accepted that any sterically and/or
functionally asymmetric molecules tend to more or less align in a
preferred direction when placed at an interface between two
distinct media. It was independently theorized Jlong ago by
Langmuir [1] and Harkins [2] based on close examination of large
number of surface tension data that, at the free surface of pure
organic (ordinary) 1liquids, there is a tendency for the
hydrocarbon ends of molecules to be oriented outward when one end
of the molecule is hydrocarbon and the other end has an extra
affinity to the liguid. The concept of the "preferential surface
orientation” of molecules successfully accounted for, semi-~
guantitatively at least, the various experimental observations.
Langmuir [1] also directed his attention to molecular orientations
in inscluble monomolecular films of saturated fatty acids and
alcohols spread on water. And, based on the fact that the area of
the water surface occupied by a single molecule (estimated from
the number of molecules emploved and the total area occupied) did
not change as the length ¢f hydrocarbon chains was varied from 14
to 34, he could correctly conclude that these rather elongated
molecules assume an upright orientation with the hydrocarbon
pointing outward from the water surface. Furthermore, Langmuir
{1] attempted to interpret Traube's rule [3] concerning the
gurface tension of solutions as a manifestation of a planar
orientation of hydrocarbon chainsg.

All of these picneering works on the orientation of molecules
at an interface were based on indirect evidence drawn from
the measurements of various macroscopic quantities of a 1ligquid
interface. Though some more evidence has been accumulated by way
of surface potential and optical experiments, etc. since then, the

orientation o¢f organic molecules at an interface still stands out



as a difficult subject to explore, both from an experimental and
from a theoretical [4] view points.

The orientation of nematic 1liquid c¢rystals at their
interfaces has an even longer history of investigations. However,
it has been approached from a direction, very different from that
adopted for an ordinary liquid interface. Since 1888 in which
Reinitzer first discovered the 1liquid crystalline state, the
observation with a polarizing microscope has been the most
fundamental and powerful procedure for studying liquid crystals.
Indeed, it was Lehmann, a German physicist specialized in
microscopic crystal analysis, who coined the names such as

"flowing crystals," "crystalline ligquid," and "liquid crystal" on
the basis of his microscopic observations of the double refraction
or birefringence in his liquid-like preparations. I Fig.l.l
shown 1is a typical patterns, now called the schlieren texture,
exhibited by a thin film of a nematic liquid crystal held between
glass plates when viewed under a polarizing microscope with
crossed polars. Though the nematic sample flows like an oil, we

can see bright regions indicating the presence of birefringence.

FIG.1.1. Schlieren texture
of a thin nematic film
confined between glass
plates. Viewed under a
polarizaing microscope
with crossed polarizers.

>

In this figure, we can also see some alternating dark

brushes, which is an indication that the optic axis is changing



from one point to the other in the specimen, and at the dark
bands, it coincides with the axis of polarizers. We now know that
such spatial variations of the optic axis is brought about by the
action of the glass plates with which the nematic is in contact.
Aand, this orientation of the optic axis is a manifestation of the
microscopic orientation of the nematic molecules at the glass-
nematic interface.

In contrast to the case of the molecular orientation at an
ordinary-liguid interface, one can "directly" observe the surface-
induced alignment of molecules in liquid c¢rystals. Though it is
not the microscopic crientation at the interface itself, liguid
crystal scientists have been unfortunately satisfied with this
advantage for more than half a century, and have paid 1little
attention to the physical and c¢hemical aspects of nematic
interfaces even in the manner as Langmuir and Harkinsg did for
ordinary-liquid interfaces. Nevertheless, it wasg certainly in
thig period leading to the advent of liquid crystal displays in
late 60's that some notable observations of the phenomena were
described and important progress in the surface-induced alignment

methods was made [5]. Below, we shall briefly review such topics.

1.3.1 Pseudo-isotropy: the first uniform surface-induced

alignment

Though the textures of liguid c¢rystal preparations are
seriously affected by their boundaries, it took more than ten
vears to lead the eves of workers to surface effects. In 1906, 18
years after the discovery of the liguid crystal, Wallerant [6] and
Lehmann [7] described "pseudo~igotropy" or "forced homeotropy";
the 1liquid c¢rystal specimen appeared completely dark between
crossed polars, regardless of the corientation of the polars, as if
it was an isotropic substance.

Concerning this observation, Lehmann confidently stated [5]):



Pseudo~isotropy c¢an be caused by the adsorptive(!) action of
the glassg; the optical axis is everywhere perpendicular to
the surface....Thin layers adsorbed on the glass govern the
orientation of the remaining molecules. They can be altered
to such a degree like soft crysgtals by means of rubbing, that
the entire mass obtains a uniform structure. The
transformation temperature of the layers adsorbed by the
glass is raised, so that they are maintained even when heated

considerably to above the clarification point,

Furthermore, Lehmann [8] correctly pointed out the role of the
vertical position of lecithin molecules in promoting the pseudo-
igotropic or homeotropic alignment. ' The adsorption of long chain
surface active agents such as lecithin is still in wide use for

obtaining homeotropically aligned samples [9].
1.3.2 Rubbing method

In 1911, Mauguin [10} produced a uniformly aligned sample of
a nematic liguid crystal, p-azoxyanisole, with its optic axis
parallel to the glass plate whose surface had been rubbed in one
direction with a piece of paper. In this case, the optic axis was
parallel +to the substrate, not perpendicular as in homeotropic
alignment, and this type of alignment is c¢alled “planar" or
sometimes “"homogeneous." It is interesting to note that by using
this technique, he obhtained a twigsted-nematic structure, which is
just the configuration almost invariably used in current electro-
optic displays, and closgely investigated its optical properties,
The rubbing method was also recognized to be effective by Zocher
and Coper [11].

The rubbing method of the surface-induced alignment was also
extensively used by Chatelain [12], probably independent of
Mauguin, for the sake of the studies on optical properties of



nematics. Furthermore, he speculated that the planar orientation
on a rubbed surface resulted from deposition of an adsorbed layer
of fatty impurities which aligned the nematic molecules via
dipole interactions. However, he did not rule ocut the possibility
of physical alteration of the glass surface by the rubbing action.

The rubbing method is still one of the most important
techniques for producing uniformly =aligned layers of ligquid
crystals for use in display devices. Though much elabhoration has
been made on the rubbing procedure and materials since the days of
Chatelain, the mechanism and the state of the alignment 1is far
from c¢lear cut, As a result, guite a few conjectures have been
proposed; as opposed to the adsorbed impurity mechanism due to
Chatelain, the rearrangement of the substrate material {131 and
the grooves brought about during the rubbing process 1[141 have
been suggested to bhe responsible for the alignment, One of the
guestions to be addressed and answered in this article is in fact

concerned with the origin of the alignment on rubbed surfaces.
1.3.3 Epitaxy on crystalline surfaces

An important observation of the surface-induced alignment is
the epitaxial orientation of nematic molecules on crystalline
surfaces., Though it has so far found no practical application, it
serves as clear experimental evidence showing that the alignment
of a nematic liquid crystal is indeed governed by the microscopic
interaction across the interface.

The orientation of liquid crystals on cleavage surfaces of
crystales were investigated by Grandjean [15] in as early as 1916
for over 80 instanceg. He observed that, on a cleavage surface of
a single crystal, a nematic liguid crystal formed several distinct
regions in each of which the optic axis of the nematic was
uniformly oriented in a direction clearly related to the symmetry

of the basal crystal.



1.4 Application of aligned liquid crystais

Uniformly aligned layers of ligquid crystals, often referred
£o as "single crystalline liguid crystal layers"™, play a critical
role in the liquid crystal-based electro-optic displays. Though
the alignment technigques of nematics had been pursued, as
degcribed in the previous section, primarily for the purpose of
precise experimental studies of various anisotropic¢ propertiesg in
sarly dayg, the proposal of "dynamic scattering type" 1liguid
crystal displays due to Heilmeier [16] in 1968 and especially the
advent of "twisted nematic" (TN) displays by Schadt and Helfrich
f17]1 in 1971 sparked a great deal of practical interest into the
surface-induced alignment of nematics.

In this section, we shall describe the basic principle of
ligquid crystal displays with a view to illustrating the practical
significance of the interfacial orientation of nematic 1liquid
crystals. We will focus our attention on TN displays, as more
than 99% of the commercial liquid crystal displays are of TN type,
today [18,19]. However, since the orientational property of an
interface has serious influence on the multiplex operation of
liqgquid crystal displays, we will shortly discuss the point
together with future perspective of the application of surface-~

induced alignment.

1.4.1 Basic structure of liquid crystal displays

In Fig.l1.2 shown is the schematic illustration of the basic
gstructure of a field-effect liquid crystal displays. The nematic
liquid c¢rystal is confined in between a couple of substrates to a
thickness of about 10 um. The substrateg are usyally glass
plates (with the thickness of about 1 mm) coated with a
transparent electrode made of Indium tin oxide (ITO), and the

electrode 1is further c¢overed with a layer of polymer or an



inorganic film which are then

treated so as to align the 33“” “i%*
liquid crystal in the desired - / \
transparent =R -0
manner. The separation bet- electrode S alighment
. . \ loyer
ween the substrate is main- " A
liquid crystoi

gioss plate
tained by means of a spacer

such as small glass spheres
or fibers, and the 1liquid

. . FIG.1.2. Crogs-sectional view of a
crystal cell is hermetically typical field-effect liquid crystal

sealed with frit glass or display cell.
more commonly with polymeric

resin.

1.4.2 Operation principle of TN displays

Field-effect 1ligquid c¢rystal displays are based on the
reorientation of liquid crystal molecules upon the application of
electric filed. When we see this process between crossed
polarizers, we can observe a change of brightness, i.e. from clear
to dark or from dark to clear, depending on how the reorientation
oceurs., In any event, such a change is thought to be most
efficiently brought about when the initial alignment is wuniform
rather than irregular as in Fig.1.1.

In TN display cells, the nematic molecules are forced to
align parallel to the substrate, but the alignment directions at
the upper and lower substrates are set to be perpendicular to each
other (Fig.1.2). In the absence o¢f electric field, this
configuration results in a planar twigsted profile of the nematic
molecules (Twisted Nematic structure), and when a linearly
polarized light travels along the axis of the twist, the plane of
polarization rotates following the optic axis of the nematic.
Then, after passing through the «c¢ell, the polarization is

perpendicular to the initial direction [Fig.1.3(a)]. So that, in



the absence of electric field, TN cell appears clear between

crossed polarizers.
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FIG.1.3, Principle of the twisted-nematic liguid crystal display.
The arrows between the substrates denote the optic axis of the
nematic liquid crystal. In the off state (a), the cell is trans-
parent between crossed polarizers. In the on state (b), the cell
appears dark.

The nematic ligquid crystal to be used in TN displays is such
that, in an electric field, the molecule, or equivalently the
optic axis tends to orient along the field direction. Thus, on
application of sufficiently high voltage to the TN cell, the optic
axis reorients in the middle of the cell almost perpendicular to
the substrate. In this case, the pseudo-isotropy condition
obtains excépt in the vicinity of the substrate surfaces where the
nematic molecules are strongly aligned. So, under this condition,
the TN cell appears dark between c¢rossed polarizers. We can
therefore switch betweéen the clear and the dark states by an
application of voltage. Obviously, the TN cell can be used both

in transmission and in reflection modes.



1.4.3 Requirements on the gurface-induced alignment and a future

trend

As appreciable from the above, the good initial alignment of
nematic molecules is a prerequisite for the operation of the
display. This situation is much the same in other type of
displays. In contrast to a surface-induced alignment in
scientific laboratory, the alignment in a display device should
resist repeated coperations over the years. In particular, it
should be stable to decomposition products of the liguid crystal
as well as to other impurities coming from the sealant, etc.
Because the surface is extremely sensitive to small amount of
impurities, these requirement has been a serious challenge to
workers who have been 1in charge of developing the alignment
techniques [201. As will be described in Chapter 3, aquite a few
methods are now known, and some of them can indeed meet the above
requirements to a satisfactory level as far as the conventional TN
displays are concerned,

Recently, the application of 1liguid crystals has been
expanded to encompass TV displays and various character terminals
{211, In these applications, the information content should be
dramatically increased compared with the seven-segment displays in
wrist watches. Consequently, a multiplexing operation becomes
inevitable, which igs in turn presenting problems of the
deterioration of vigibility and the reduction ¢f the operation
speed. Although a subhstantial progress has been made by the
introduction of “active matrix" {22], a drastic improvement of
the multiplexibility has been theoretically foreseen by way of a
detailed control of the interfacial orientations [{23-28].

In order to secure the vigibility ioss in TN structure,
Scheffer and Nehring [29] proposed a ‘"super-twisted nematic”
display in which the optic axis is twisted more than 90 degrees.

In order to achieve the reguired initial configuration of nematic



molecules, the surface of the gsubstrate must be so treated that
the molecules be aligned in a direction inclined by about 30
degrees from the substrate surface. Although the working principle
of the display is no different from that of conventional TN
displays, the lack of good alignment technigue is impeding 1its
commercial applications. The development of an appropriate method
for such an alignment condition is now the subject of intense
researches.

To overcome the limitation on the operation speed in TN
cells, quite a few studies have been concentrated on the use of
ferroelectric liquid crystals, which have been first synthesized
in 1975 [30]. Because of the permanent dipole, the coupling with
an electric field is several orders stronger than in the wusual
nematic liquid crystal. Moreover, by making use of a well aligned
thin Jlaver of ferrcelectric liguid crystal, one can achieve a
bistable operation with a responge time on the order of micro
gseconds [31]. In this case, too, the hazard that is preventing it
from commercial realization is the lack of technique to facilitate
the alignment as required [32].

In vwview of these circumstances, it appears to be the high
time to start intensive systematic and basic studies on the
interfacial orientational ©phenomena of liguid crystals to bring
over the surface-induced alignment technigues from the hands of

artists to engineers.



Chaptexr 2

PHYSICAL PROPERTIES AND STRUCTURERK

OF NEMATIC LIQUID CRYSTAILS

This chapter is devoted to the description of the fundamental
properties of the nematic liquid crystal [1-6] so as to found a
minimum necessary basis for investigating the nematic interface in
later chapters. We focus our attention here on the symmetry and
long range order in nematics as well as on the elastic properties,
However, the treatment is extensive only for the Frank theory of
curvature elasticity [7], since it plays an especially important
role in formulating the principal concepts of the orientation at
nematic interface. The symmetry and orientational order will be
touched upon very briefly, mostly in relation to the phase
transition between the nematic and the isotropic states, employing
the treatments due to de Gennes [8]. _

In connection with the curvature elasticity, we shall be, at
present, concerned only with uniformly aligned samples in the
absence and presence of external field. As we are exclusively
interested in the quantitative aspect of the interfacial
orientation of nematics, we shall largely neglect such important
topics as the “"textures®™ and "disgclinations" in thin nematic
gsamples [9,10]1, although they are closely connected with the

curvature elasticity as well as the surface properties.



2.1 Fluid with uniaxial anisotropy: Nematic liquid crystals

Liquid c¢rystals are stateg of matter with partial order as
regards the orientation of their constituent molecules, while
translational order is entirely or partially lost. As mentioned
in the previous chapter, the liguid c¢rystaliine state was first
found about a century ago by Reinitzer and Lehmann in an organic
substance.

Liguid crystalline states are the egquilibrium thermodynanmic
phases between the crystalline s0lid and the ordinary 1ligquid.
There are two clasgses of liquid c¢rystals, thermotropic and
lyotropic. In the thermotropic ligquid crystals, with which we are
exclusively concerned here, the ligquid crystalline phase emerges
as the s80lid of a certain
organic compound is melted.
In the lyvotropic liguid crys-
tals, on the other hand, the
liguid crystalline phase is
obtained in colloidal solu-
tion, and in this class,
concentration is the primary
controllable parameter,
rather than temperature as in
the thermotropic class.

Since Friedel (111,
three basic types of 1liquid

crystalline phases are dis-

§ : (Y t‘l,n.g.n‘n,.n.tga.a:a‘w‘cga%n‘ "
tinguished according to their S . " . . 0.iliﬁm‘mi.mﬁm
structural properties: St shan

"nematic," "cholesteric," and

"smectic." In Fig.2.1, the T
¥1G.2.1. Arrangement of molecules in ligquid
crystal phases. (a) Nematic phase. (b) Chole-

these phases are schematical- steric phase. (c) Smectic phase (smectic A).

arrangement of molecules in



ly illustrated.

Liguid c¢rystals are found amcong organic compounds. The
organic¢ molecules which exhibit liquid crystalline phase have wide
variety of chemical structures. However, certain common
structural features can be found: (1) Highly non-spherical
molecular shapes, i.e., rodiike, disclike, etc.; (2) Rigid
backbone; (3) Strong dipocles or highly polarizable groups. In
Table 2.1, typical thermotropic liquid crystalline compounds are
listed together with their phase transformation sequence. The
experiments to be described in this thesis have been exclusively
performed on the chemically stable, room temperature nematic
liquid crystal, p-n~pentyl-p’-cyvanobiphenvyl, which is wusually

referred to as 5CB.

TABLE 2.1. Typical liguid crystalline compounds

and their phase transitions.

1, p-azoxyanisole (PAA) S 5. trans-4-heptyl (4~cyanuphenyl)cyf!ohexaﬁé (PCH“L.)

Hﬁﬂwcngm§ 7 Ne-ocH, Cmm4c>~<>—<>mcn
4] 30°C 57°C
117.4°C 134.4°C solid ™ nematic > isotropic
solid nematic isotropic

6. Cholesteryl benzoate
2. p-methoxybenzylidene- p-n- butylaniline (MBBA)
H;3C CHa

Ihcom<;>—CH=N—<;>mcah o HyC -
i

22°C 47°C C—0
solid S0 nematic == isotropic
3. p-n-pentyl-p-cyancbiphenyl (5CB) 147°C 186°C

solid =il cholesteric so——= isotropic

it

24°C BC
solid nematic isotropic

4, p-n-octyloxy- p'-cyancbipheny! (80CB)

CgH |10—Q®m CN

55°C 67°C 86°C

solid ;o™ smectic A 57— nematic = isotropic




2.1.1 The nematic phase

A, The director

The term "nematic® is derived from the Greek word,
vauoaroes (nematog), meaning thread-like. This terminology is
based on the naked-eye observation of nematic liquid crystals that
there c¢an be seen a large number of thin threads (see Fig.l1.1),
regulting from the arrangement of molecules in this state
{Fig.2.1(a)1l.

The nematic phase is characterized by long-range
orientational order, i.e., the long axes of molecules (symbolized
by ellipses in Fig.2.1{(a)) tend to align along a preferred
direction. There is however no long-range order in the positions
of the centers of mass of the molecules, though a certain degree
of short-range order may remain ag in ordinary liquids. The
molecules can rotate quite freguently about their long axesg, and
there is no preferential orientation as ragardsr the ends of
molecules, i.e., opposite orientations are egually probable. The
nematic phase has thus a uniaxial symmetry about this preferred
direction, and 1its macroscopic physical properties, optical,
electrical, magnetic, mechanical, hydrecdynamic, etc., all exhibit
corresponding anisotropy. The important concept in describing the
nematic state ig therefore the axis of symmetry. And, it is
usually specified by a unit vector {(along this axisg) called the
“director” RH. This picture of the nematic phase is supported by
the results of X-ray and NMR studies.

Although the ground state configuration of the director
corresponds to a spatially uniform one, the director may vary its
direction f£rom one point to the other through the nematic as a
result of thermal fluctuations and/or of external agents such as
electric and magnetic fields, or surfaces. The action of surfaces
on the alignment of director is nothing but the surface-induced

alignment. As will be described later, the spatial variation of



the director can be described with remarkable precision by means
of the Frank theory of curvature elasticity. And, it is now well
known that the opague appearance of a nematic liquid is the
conseqguence of the intense light scattering due o vigorous

thermal fluctuations of the director [11].

B. The orientational order parameter

Another important concept in characterizing the nematic state
is the orientational order parameter, which describes the degree
to which each molecule is strictly oriented along the director.
For simplicity, let us imagine that the molecules composing the
nematic phase are rigid rod, whose orientation can be completely
specified by a unit vector 1; it should be sgirictly distinguished
from the director N, Since the nematic phase has, as mentioned
above, a center of symmetry, the average of 1 vanishes, and hence
it is impossible to define an order parameter of vectorial
character.

de Gennes [1] introduced the "tensor order parameter" which

is defined as

1
Qi35 = 5 G311 - 8352, (2.1)

where > denotes the thermal average, and aij the EKronecker

symbol. Q is a symmetric traceless tensor. it 1is readily

ij
appreciated that Qij has a correct property as an orientational
order parameter for the nematic phase. For example, if the

molecules are perfectly aligned along the director in the x-~axis,

we find

Qxx=1, ny:sz:-IIZ, and QxyaQyzzszmo. {(2.2)
And, if they are randomly oriented,

Qij = 0, {2.3)



¥When the uniaxial symmetry prevailes as in the nematic phase,
the tensgsor order parameter can be rewritten in terms of the

director as follows:

1
EQ(Sninj - 8*'); (2-4)

Qij i3

where

o
H
t

1 2
2<3cos e - 1>, (2.5)

with § being the angle

between the molecular
axis and the director.

Q is call the “scalar

order parameter"” or i .
"order parameter” for _g |
short, which assumes 1 5
in the perfectly orien- é' g
ted nematic and 0 in the 5

3
isotropic orientation. b

3 - L 1 i | L
In Fig.2.2, the tempera 55 5 s s 5
ture dependence of the temperature T-T (K)
order parameter has been o
reproduced from Ref.12, FI1G.2.2. Order parameter as a function of
temperature for alkyl-cyanobiphenyles (nCB).

for homologous series of n stands for the number of carbons in the

n-alkyl-cyanobiphenyls. alkyl chain. From Ref,12.

C. Relationship between the order parameter and the macrosgcopic
material constants of the nematic¢ liquid crystal

The orientational order parameter can be related with the
anisotropic part of various macroscopic properties of nematics.
The most clear-cut example is the magnetic polarizability. Since
nematics are diamagnetic with small magnetic polarizability, the

local field correction can bhe to a good approximation ignored.



Thus, the polarizability of a macroscopic body is simply the sum
of molecular polarizabilities. For a nematic consisting of simple

rods, we have
Xy~ X1 7 C(AH' A,3Q, (2.6)

where X, and X, are the magnetic polarizability of the nematic
in the directions parallel and perpendicular toe the director,
respectively, A, and A, are the polarizabilities of one rod
molecule parallel and perpendicular to its long axis, and ¢ is the
number of molecules per unit volume of the nematic. Due to the
diamagnetic nature, X, and x; are negative, and further because
of the aromatic rings, X, < X, .

The refractive index ¢f a nematic is also anisotropic with
respect to the director. The refractive index along the optic

axis, i.e., the director, is written as n and that perpendicular

er
to it n,. Although the local field correction is more significant
thigs time than in the case of magnetic polarizability, we can
roughly obtain

ng = N, o< Q. (2.7)

e

For obtaining a more precise relation, we have to resort to Vuks'
formula or such [13]. In nematics, the extraordinary index ng is

larger than the ordinary index n. {(because of the aromatic rings

o
againl), and hence the optical properties of a uniform nematic are
identical with those of an "optically positive" crystal. The
refractive indices of 5CB have been accurately measured by Karat
and Madhusudana {12, see also Chapter 71. The birefringence
Anﬂne-no decreases from 0.185 at 20 K below the nematic-isotropic
transition point (T _=308 K) to 0.116 at 1.2 K below T, for 1light
of wavelength £32.8 nm. This reflects the degradation of the
orientational order as the temperature is increased.

In the case of dielectric constants, however, it is no longer

possible to draw a simple correlation with the order parameter as



above, As shown in Table 2.1, nematic molecules involve
a group with substantial dipole moment. These dipoles contribute
to the dielectric property in a very complicated manner, which is
strongly dependent on the short range structure in nematics. In
the case of 5CB, a cyano group exists, giving a dipole which is
almost parallel to the geometrical long axis of the molecular
core., So that, its dielectric constant is larger in the direction
of the director; the difference between the dielectric constants

parallel and perpendicular to the director,
Ae = €,- & , (2.8)

is «called the dielectric anisotropy. In fact, the dielectric
constants of 5CB are g ~7 and ¢, ~17 [2], and the dielectric

anisotropy is positive. In the case of MBBA, on the other hand,
the dipole moment ig almost perpendicular to the long axis of the

molecule, thereby making the dielectric anisotropy negative,.



2.2 Curvature elasticity

In any microscopic region of a nematic, the preferred axis
can be precisely defined, giving rise to the local director. Even
in eguilibrium, however, the director can vary from one position
to the other through the nematic by the action of external £field
and bounding surfaces. If such a variation occurs on a length
gcale much larger than the molecular dimension, the spatial
configuration of the director for given external field and
boundary condition can be analyzed with extreme rigor by means of
the elastic continuum theory of nematics. The elasticity
associated with the director configuration is conceptually very
different from the usual elasticity of solids, and we shall refer
to it as the "curvature elasticity." The theory of curvature
elasticity was originated by Zocher [14)] and Oseen [15}, and
completed in the present form by Frank [7].

The essential approach of the theory is completely the same
ag in the elastic theory of solids; first, we define the
"ecurvature strain®” and the "curvature stress,” and assume a
linear relation between them similar to Hook's 1low. This
procedure can be systematically carried out by constructing a free
energy density as a guadratic function of the curvature strain in
such as way as to satisfy the symmetry requirement coming from the
fundamental structure of the nematic.

In the ground state, the director is uniformly distributed in
the nematic, so that the director field N{(r) is a constant in
space, It should be noted here that, in the infinite sample of a
nematic, no preference existg for the director as long as they are
invariant in space. Therefore, the free energy of the nematic is
independent o¢of N in the ground state. This property o¢f the
nematic state is known as the Goldstone degeneracy (6,161, which
is connected with the spontaneous symmetry breaking at the

isotropic +to nematic phase transition. Hence, the increase of



free energy is only associated with the relative variation of the
director in space. The natural choice of the curvature strain is

the spatial derivative of the director field N{r).

2.2.1 Deformation free energy and the normal modes

Up to second order in the curvature strain, the scalar
function which 1is compatible with the uniaxial and inversion
symmetry of the nematic can be readily constructed by way of
direct calculations. We will not repeat the procedure here, and
thus those who are interested in it are referred to the standard
textbook of ligquid crystals [1-61.

According to the Frank theory, the curvature gtrain can be
decomposed into three independent modes, splay, twist, and bend.
The director configurations corresponding to those modes are
illustrated in Fig.2.3.

#s‘f“s“ ;':; H' e
Hunvmﬁmwﬁfzuﬂﬂﬁ:

ground state

F1G.2.3. Principal modes of curvature strain
in the nematic phase.
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The free energy density fd associated with the principal

modes are written as follows:

1 2 1 2 , 1 2
£4(r) = - Ky(divh)“® + - K,(N sroth)“ + - K3(I\Xrotn) .
P p 2

(2.9
where Kl, Kz, and K3 are the elasgtic moduli for the splay, twist,
and bend modes, respectively. These elastic moduli are usually
referred to as the Frank elastic constants. The actual values of
the Frank constants of known nematics lie around 10711 . And,
these constants are empirically known to satisfy the following

inequality:
K3 > K1 > KZ' (2.10)

Furthermore, according to the mean-field theory of the Frank
constants due to Nehring and Saupe [17,181, the Frank constants
are approximately shown to scale with the square of the order

parameter:
K K K OCQZ {(2.11)
1’ - 3 * :

This relation can also be derived via a phenomenological approach
based on the lowest-order expansion of the elastic deformation
energy in terms of the tensor order parameter ([8]. It should
however be emphasized that this relation is highly apprroximately,
and the higher order correction becomes in many cases important
(19,20].

In the absence of external orientational field, the
equilibrium director configuration ig such that the total

deformation energy.
Fd =.f fd(r) ar, {2.12)

should be minimized under the prescribed boundary condition.
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2.2.2 Effect of electric field

Owing to the anisotropic dielectric property of nematics,
electric fields are effective to rotate the director. In the
presence of an electric field E, the electrical displacement D can

be written as

D=g¢g E+ Ae(Nh+E)N. (2.12)
So that, the dielectric energy density in the nematic medium Fe is

given by

f, = D*E/2 = e,E%/2 + Ae(n-E)%/2.

= D%/(2e.) - (Ae/2e8)(N+D)2. (2.13)

In case the nematic is place in an electric field produced by
constant charges on a conductor, we should consider the process
that occurs under constant electrical displacement. Therefore,
from the last equation of the above, we see that, when the
dielectric anisotropy Ac¢ is positive as in 5CB, the director
tends to align in along the direction of D. The actual
configuration of the director in an electric field is determined
in such a way as to minimize the sum of the deformation and the
dielectric free energies under the boundary condition.

One of the most remarkable examples of the field-induced
deformation of the director field may be the Freedericksz
transition {1] which occurs when an electric or magnetic field is
applied to a slab of nematic ligquid crystal which is uniformly
aligned by the action of the substrates. If the dielectric
anigsotropy is positive, and the initial orientation ig planar,
i.e., the director parallel to the substrate, no deformation of
the director field does occur even in an electric field unless the

field strength is below some threshold value given by

Vep = n(K /0212 (2.14)
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where vth is the threshold voltage across the slab. And, as the
field strength is increased beyond the threshold, the director
field begins to deform from the uniform configuration. The
Freedericksz transition 1is in fact the basis of most liquid
crystal displays inciuding TN type, and also offers important

means to probe the elastic property of the nematic [21]).

2.2.3 Hydrostatic stress in deformed nematics

In ordinary liguids, the hydrostatic stress tensor is given
by a symmetric tensor mpSij with p the pressure. In a
orientationally deformed nematic, the director deformation also
contributes to the hydrostatic stress, and gives rise to an extra
static pressure which should ultimately balanced by an external
force (not torque) applied at the boundary. This hydrostatic
stress of orientational origin has a serious effect on the
morphology of the interface of nematics [see Chapter 4].

The stress tensor in a deformed nematic can also be derived

by means of the common approach based on the virtual displacement

f11. 'The resulting stress tensor can be written as
d . .
where
njk ® afdfa( ank/ Brj). {2.18)

In Egq.(2.15), summation over the repeated subscript k should be

performed. Then, adding the contribution from the pressure, we
obtain ‘
e d _
055 = O35 p&ij, (2.17)
where o€, is the total hydrostatic stress tensor in a deformed

132
nematic, and is usually referred to as the "Ericksen stress

tensor."” For a surface element dsﬁ in the deformed nematic, the

force exerted on the element in the i-~direction is given by
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- @
fi—aijdsj.
For the nematic to be in the mechanical equilibrium, the

following condition must be satisfied:
€ -
aaijlarj = 0, (2.18>

By a direct calculation utilizing the equilibrium condition of the
director profile, we can readily find that the pressure has to be

given by
p(lr) = - fd(r) + gonstant. (2.193

Finally, it may be worth noting that, when the deformation is
occurring only in one direction, say alcong the z-axis. it
immediately follows from Egs.(2.15) and (2.16) that

d . .
09, = - 2f4, (2.20)

since f,; is the second order homogeneous function of Bnklaz.
Then, in combination with Egs.(2.17) and (2.19), we find that the

Ericksen stress is written as

o = - f4 + constant. o (2.21)

e
2z
Because the above constant is the pressure at a point out side the
deformed region, it is clear that the director deformation exerts

a force on the confining boundary along the outward normal of the

interface; in other words, so as to expand the deformed volume.
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2.3 Landau-de Genneg theory of the isotropic to nematic

phase transition

in this section, we shall briefly review the elements of the
Landau-de Gennes theory, 8o as to facilitate the later application
to interfacial problems.

Let us assume, following de Gennes [1,8]1, that the free
energy density g(p,T,Qij) i8 an analytic function of the tensor

order parameter Q near the isotropic-nematic transition

14
temperature Tc {the clzaring temperature}. And, we expand g in
powers of Qij up to fourth order. Since the free energy must be
invariant under uniform rotations of the system, all terms of the
expansion must be scalar. The most general form satisfying this

condition ig shown to be

1 1 1
= —n - 2

(2.21)
where go is the free energy of the isotropic phase, which is
independent of Qij' and as before, summation over repeated indices
is implied. The coefficients of expansion A, B, and C are in
general functiong of the temperature T and pressure p. However,
we shall postulate that B and C are constants, and A has a

tamperature dependence of the form
A = a(r - ). (2.22)

The equilibrium state isg characterized by the order parameter
which minimizes the free energy. The presence of the third order
term demands that the phase transition should be of first order.
By using the uniaxial tensor order parameter Eq.(2.4), we can
rewrite Eg.{2.21) in terms of the scalar order parameter:
1

1 1
g = go + - AQ% - - BQ® + - co4. (2.23)
2 3 4
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The equilibrium value of  is given by that which makes the free
energy minimum. The dependence of g on Q at several temperatures
are shown in Fig.2.4. Ve gee that there ig a discontinuous phase
transition at a temperaturs Tc slightly above T*. The source of
thig first-order phase transition lies, as mentioned above, in the
fact that there exists a third order term in Eq.(2.23), This is
related to the fact that the state with  and that with -Q are not
equivalent in the case of nematics. As immediately obvious from
the definition of the order parameter, if the state with positive
0 is optically positive, the state with negative Q is optically
negative,

The actual value of Q corresponding to minimum free energy

can be derived from Eq.(2.23) as

0 = 0, T » Tc,
Q = (B/2C){1 + [1 - dac(T-T*)/B%11/2}, T<T,,.
(2.24)
The clearing temperature Tc is given by
T. =T + 2B%/(9aC), (2.25)

c

and hence the order parameter at Tc by
gta) Ta
Qc = 2B/ 3C. (2.26) . ¢

Furthermore, the latent heat

of the transition is expressed ~0.2
as
q = aTQ.%72.  (2.27) -

The temperature T* cor-
responds to the 1limit of

metastability of the isotro-

pic phase. It should be i

posgible to supercocl the FIG.2.4. Landau-de Gennes free energy
density as a function of the order
parameter for various characteristic
temperatures,
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igotropic liguid to this temperature. Below T*, the isotropic
prhase becomes absolutely unstable with respect to any degree of
£luctuation of the order parameter. Similarly, it is also
meaningful to consider the temperature at which the nematic phase

becomes absolutely unstable. This temperature, ?* is given by

n’

* = 1 + B2/(4aC)

Tn

FH

T, + B2/(36aC) = T, + (T,-T )/s. (2.28)

Coleg [22] determined the parameterg of the theory for n-
alkyl-cyanobiphenyls by means of the pretransitional Kerr effects
in the isotropic phase. His results for 5CB are listed in Table
2.2.

TABLE 2.2. Parameters in Landau-de Gennes free

energy density for 5CB [Ref.221].

T, - T 1.14£0.3 K
a (0.13%£0.01)X10% g/m3k
B 1.6£0.2 J/m3K

c 3.9£0.3 J/m>

Q 0.27+0.01

q (1.47£0.15)X103 J/kg

The value of Q. has been calculated via Egs.(2.25) and (2.26) and
shows a good agreement with the result of the direct optical
measurement {12,Aéee Fig.2.21. Further, since the latent heat of
the c¢rystal to nematic transition is about 17X10> J/kg, we ses
that the latent heat of the nematic-isotropic transition is about
one order smalier than that. Thig is indeed one of the most
dramatic feature of the transition, and indicates the weakly

first order nature of the nematic-~igsotropic transition.

2 - 17



Chaptexr 3

CONCEPTS IN THE SURFACE-INIDUCED

ALIGNMENT OF NEMATICS

The surface-induced alignment of nematic liquid crystals is,
as we have seen in Chapter 1, a kind of interfacial phenomenon
known for over 70 yvears. Especially, in the last two decades, the
surface~induced alignment has been a matter of great concern for
both scientists and engineers, thereby stimulating gquite a few
studies in the field.

The spsctrum of these researches are however enormously wide,
ranging from empirical search for good aligning substrates to
theoretical studies on the origin of alignment. And, still today,
there seems to exist a large gap between the theoretical and the
experimental sectors. As mentioned in Chapter 1, this article is
an attempt to £ill in the gap by setting forth an appropriate
phenomenological framework on which various observations related
to the surface-induced alignment can be settled and to which
mi¢rogscopic theory can be converged. To construct a good
phenomenology, it is first of all necesgsary to figure out what is
common to any interfacial orientation of nematics and what is not.
The £first step in so doing is to clarify what does the surface-
induced alignment mean. Above all, we must have a language
appropriate to express the point, before we start to discuss over
the problem.

This section 1isg devoted to the c¢ritical review of the
conventional concepts concerning the surface-induced alignment,
with a view to increasing our vocabulary and seeking more powerful
words. We also present some facts and coniectures about the
surface-induced alignment by focusing on the two most commonly

employed technigques, “rubbing” and "obligue evaporation” methods,



Wwith which we shall exclusively concern curselves later.



3.1 Pretilt angle and the anchoring strength

The surface-induced alignment of practical significance can

be classified into three basic types as shown in Fig.3.1.

=== 7w T
= aﬁ W

planar tilted . homeotropic

FIG.3.1. Basic types of the surface-induced alignment.

in the first type, the director is aligned parallel to the
gsubgtrate, and this type of alignment is called "planar.” 1In the
gecond type, the director assumes an obligue angle with respect to
the substrate surface, we call this type the "tilted” alignment.
Finally, in the third type, the director is oriented normal to the
substrate. This is referred to as the "homeotropic" alignment.

To be more quantitative, the alignment of the director on a
g0lid substrate is schematically depicted in Fig.3.2. The
fundamental gquantity associated with the alignment is, as noted
above, the angle that the director is making with the substrate,
@e and ¢e' We refer to these angles as the "pretilt angles,"
and the former is especially the "polar"” pretilt angle and the
latter is the “Tazimuthal” pretilt angle. The concept of the
pretilt angle is inevitably connected with the surface-induced
alignment. And, it is sometimes used as a synonym of the surface-
induced alignment.

In the operation of displays, the pretilt angle plays a



decigive role. S0, wvarious

accurate methods have been
» ne'
devised for their A
measurements soon after the y
ligquid c¢rystal display beconme e
X L
realistic. The commonest and q%

most accurate method is the I |
magnetic null methed ({11,
with which one can easil¥  prg.3.;. pretilt angles at a nematic
determine the pretilt angle interface.

to an accuracy 0.1 degree,

Another important concept associated with the surface-induced
alignment is the anchoring strength. This was first introduced by
Rapini and Papoular {2] tec guantitatively account for the strength
with which the director is restricted to the easy axis imposed by
the substrate. They postulated that the interfacial free energy
or tension of the nematic-substrate interface wasg written as a
function of the actual angle of the director at the interface in

the folliowing form:
1 P 2 1 a 2
T = Te * 5 Easin {@o“@e) + 5 Easin (‘I’o'@e}, (3.1)

where ©, and $o are the actual polar and azimuthal angles of the
director at the interface, regpectively. Here, Eg and Eg are the
pogitive constants respectively called the polar and azimuthal
anchoring strength coefficients, or the poclar and azimuthal
anchoring energies. Qbviously, the interfacial tension 7y assumes
a minimum value when the director coincides with the easy
e and ®o=8 .

increase, the director becomes harder to rotate from the easy

direction, i.e., B.=8 As the anchoring energies

direction.

Egquation {(3.1) is usually used in conjunction with the Frank



elastic energy Eq.(2.12), and offers a basis to gquantitatively
take into account the effect of aligning substrate on the director
configuration within the nematic in contact with it,. Ag will be
fully discussed in Chapters 4, 5, and 7, the anchoring strength is
certainly an important concept characterizing the orientational
property of a nematic interface. However, in comparison with the
pretilt angle, it is rather abstract, and is also hard to measure
experimentally. In fact, it is only recently that reliable

measgsurement of the anchoring strength has become possible.

These two quantities do not exhaust all the concepts relevant
for the characterization of nematic interface. Among other, we
can conceive that the orientational order may be different in the
interfacial region from that in the bulk, because of the aligning
force exerted by the substrate. It is also expected to serve as a
characterizing parameter. Indeed, we will emphasi:ze the
importance of the surface order parameter as an ingredient of the
phenomenclogical description of a nematic interface.

Since the surface-induced alignment is unmistakably a
macroscopic interfacial phenomena, it 1is not fair and insufficient
to restrict the attention to those parameters which have direct
connection with the orientation of molecules. Namely, we should
also pay attention to such concepts as ‘“"adsorption,” "surface
entropy,” and "surface energy” which are the central variables in
the phenomenological description of the interfaces of ordinary
liquids. We will theoretically pursue this direction in Chapter
4, and show that thermodynamically closed treatment of pretilt
angle and anchoring strength is inevitably connected with those

concepts.



3.2 Methods of surface-induced alignment and proposed

mechanisms of alignment
3.2.1 Rubbing and oblique evaporation techniques

Today, we EKnow gquite a few methods to achieve uniform
alignments of nematics shown in Fig.3.1. Those techniques were
thoroughly reviewed by Cognard [3}. In assessing wide variety of
alignment technigues with emphasis on reproducibility and
reliability, he recommended the following methods for each type of

alignment:

{1) planar: rubbing a polymer £ilm,
oblique evaporation of Si0 [4].

(2) tilted: obligue evaporation of §i0 at a glancing angle,
crossed evaporation of SiQ,
application of homeotrepic aligning agents on

obliquely evaporated SiO.

(3) homeotropic: application of surface active agents such

ag lecithin, or silane coupling agents.

These methods are useful both in industrial and in laboratory
applications. Especially, s8ince the planar alignment is a
prerequisite for TN displays, the rubbing and the obligue
evaporation methods are of great practical importance. Although
rubbing 1is carried out by means of a sophisticated "rubbing
machine” [5] in industries, rubbing by hand is gstill effective in
laboratory for research purposes. The obligue evaporation of Si0
is also an easy yet highly reproducible method,. In this thesis,
experimental works are largely concentrated on the substrate
treated by these two methods. S0, we shall here desgcribe the

actual procedure in some detail below.



In Fig.3.3, the process
of rubbing is illustrated. A
glass slide coated with poly-
vinylalcohol (PVA) is rubbed
in one direction with lens
paper. The weight is normal-
ly 45 g. For preparation of
PVA coating, 1 wt% aqueous
solution of PVA is deposited
through 0.5 um millipore
filter on a spinning glass
substrate. The deposited
£film is dried at 80 C for 30

—_— lens paper
weight
I |
substrate
rubbing

FIG.3.3. Rubbing arrangement.

min. The thickness of the resulting PVA film is about 600 A.

The oblique evaporation
of 8i0 can be made in an
ordinary wvacuum evaporation
(Fig.3.4). In our laboratory,
powder of S5i0 is heated in a
Tantalum chimney in a vacuum
of about 10°% Torr. The
glass substrate iz inclined
£rom the direction of deposi-
tion. According to the angle
of inclination 8, the resul-
ting £ilm is here denoted as
8$10(8). The deposition rate
is controlled to be 7 A/s in
terms of a substrate inclined
to 60 degrees, The
evaporated 1is continued for
90 =,

2

o L
1T

oblique evaporation

FIG.3.4. Obligque evaporation technigue.



Although rubbing technique leads, in most cases, to the
formation of near planar alignment with very small pretilt angle,
the alignment on an obligquely evaporated S5i0O is known to yield
rlanar as well as tilted alignments depending on the deposition
angle 0 {86,71. When 6<45° , random planar alignment results,
but when 45° <8<¢72°, the director aligns in a direction
perpendicular to the incident beam with a negligible polar pretilt
angle. Furthermore, when &>75° , the nematic is oriented toward
the direction of the deposition with the pretilt angle ranging
from 15 to 25° [8.9]. In the last case, the pretilt angles are
also known to be slightly dependent on the deposition condition
and the liquid crystal used {10]. And it undergoes a marked
temperature dependence near the nematic-isotropic transgition point
[11-131.

3.2.2 Conjectures on alignment mechaniasms

Some conjectures have been presented as to the alignment
mechanism on evaporated S8i0 filmse. The mosgt popular idea is based
on the structural anisotropy inherent in the cobliquely deposited
£ilms, and explains the alignment as resulting from the
minimization o¢of the curvature elastic energy induced by the
anigotropic structure of the film, i.e., Berreman's groove
mechanism [14], Although such anisotropic or columnar structures
have been confirmed with electron microscopes [15-19], it is as
vyet hard to estimate the significance of the film structure
relative to the physico-chemical interaction between the solid and
the liquid crystail (20, 211}.

Cn the other hand, the alignment mechanism on a rubbed
substrate seems to be even more obscured. 1t wag proposed 1long
ago by Chatelain [22] that the orientation results from dipole

interactions between an ordered layer of adsorbed fatty



contaminants and the nematic molecules. However, he did not rule
out the role of structural modification of the substrate as
conceived as regards the evaporated SiQ films. What is even mcre
confusing here ig the presgsence of polymer £ilm, in which polymer
chains may to some extent reorient in the rubbing direction,
preoducing aligning force in similar manner as a stretched polymer
£ilm aligng liquid crystals.

Thus, the mechanism of uniform alignments on these substrates
is s8till a matter speculation, The c¢correct answer may be
something like that both structural and physico-chemical
effects are important (cof course in a varying degree) for the
surface-induced alignment of nematics. However, this is not at
2ll an answer to the original question. At present, it seems that
noe one knows what a truly well-posed guestion is like and what
form the correct answer would take. Setting an either-or type

gquestion may not be fruitful.



Chapter 4.

THERMODYNAMICS OF

THE NEMATIC LIQUID CRYSTAIL ITNTERFACEK

In this chapter, we will concern ourselves with the
thermodynamic conseguences of the orientational anisotropy of
nematics on their interfacial properties [11]. Our primary
objective here is to extend the Gibbs thermodynamics of £luid
interfaces [2], originally develcoped for ordinary fluids, so as to
encompags the interface between the nematic and ancther non-
nematic media by taking explicit account of the orientational
degrees of freedom inherent in the nematic¢ phase.

The counter phase being in contact with the nematic may in
principle be fluid or solid, but we shall always assume here that
their bulk (thermodynamic) states are not influenced by the
orientational degrees of Ffreedom of the nematic as long as other
thermodynamic variables are held constant. This assumption appears
almost trivial in the case of "igotropic” fluids, and is also
expected +to remain realistic for highly refractory solids sguch asg
those which are in extensive use as a substrate for nematic liquid
crystals. However, for those phases, including most of the liguid
crystals, which have an elastic¢ property comparable to that of
nematics, this assumption might become far from being a good cone.
Accordingly, the intriguing problems concerning the interface
between a nematic and a smectic phases, etc. must be excluded.

In this chapter, we will restrict our arguments to an
interface between a nematic and a rigid solid or an isotropic
£luid (not necessarily the "isotropic phase" of the nematic in
question). Since both cases can be treated in an almost parallel
fashion, we shall exclusively, unless otherwise noted, discuss the

case of a nematic in contact with an isotropic fluid, which allows



for a thermodynamically more complete treatment than the other,

By describing the orientational state of the bulk nematic by
means ¢f the Frank thecory of curvature elasticity and rigorously
applying the Gibbs recipe, we are automatically led to the
concept of the "surface of extrapolation." And, it is shown that
the separation between the gurface of extrapolation and the
surface of tension should be identified with the extrapolation
length, which as mentioned in Chapter 3 is a measure of the
orientational anchoring strength at a nematic interface.
Furthermore, ve are able to give a thermodynamically and
mechanically consgistent definition of the anchoring strength as a
natural generalization of the Rapini-Papoular formalism.

The present thermodynamic theory allows us to c¢onnect the
orientation-related surface parameters of a nematic such as the
pretilt angle and the extrapclation 1length with the common
thermodynamic variables like temperature, pressure, and
concentrations; thereby it helps us to appreciate and predict on a
very general ground the behavior of those surface parameters in
response to the changes of extraneous conditions. In particular,
the changes of the adsorption and the surface entropy asgsociated
with the rotation of the nematic director are discussed in detail.

We also investigate the thermodynamic basis and implications
of the alignment transition at nematic interfaces. Especially,
when the pretilt angle or the anchoring strength undergoes a
critical change in response to the variation of temperature and/or
concentrations, the thermodynamics gives rise to criteria that the
corresponding critical exponents have to obey.

We ©begin our argument with summarizing the elements of the
Gibbs surface thermodynamics to an extent needed for later
arguments, mainly following the treatment due to Hill [3]. Those
who are familiar with the surface thermodynamics of ordinary

£luids may skip to Section 4.2.



4.1 Gibbs' thermodynamics of fluid interfaces

Ag intuitively evident, an interface existing between a
couple of real fluids is by no means a simple mathematical surface
of discontinuity. Rather, when viewed closely, there must be a
transition layver with finite thickness, over which the properties
of the fluid change continuousgly from those of one phase to those
of the other. Consegquently, in order to apply the recipe of
classical thermodynamics to a fluid interface, one needs to devise
some tricks to cope with this inherent inhomogeneity.

The thermodynamice of a fluid interface has been thoroughly
formulated by Gibbsl[2] and his followersi3-6] in the case of
ordinary Yigotropic” f£fluids, by partitioning the extensive
variables of the whole system into the bulk and the interface
parts utilizing the concept of either the "dividing surface"{2-5]
or the "surface phase” [6]. The former is an imaginary surface of
demarcation with infinitesimal thickness, up to which the fliuids
in c¢ontact are asgsumed to be completely homogeneous, while the
latter refers to a hypothetical "third phase"” which are taken to
embrace the inhomogeneous region associated with the interface, It
is notable, at this point, that since both of these concepts are
merely an instrumental construct to facilitate further
thermodynamic¢ treatments, none of their results, as long as they
are physically relevant, depends on which pathway is to be
actually adopted to reach them [7-9].

An interface between £fluids may be planar or curved in
egquilibrium depending on the environmental conditions, as we often
experience in daily life. The Laplace eguation indeed tells us
that the curvature of an interface should increase in proportion
to the pressure difference across the interface (see 4.1.4).
Though this is essentially & condition of "mechanical®
eguilibrium, the concomitant morphological variation has a rather

far reaching conseguence on the thermodynamic treatment of the




interface. For example, as we shall see later, the interfacial
tension c¢an be defined uniguely (independent of the position of
the dividing surface or the gurface phase) only when the interface
is planar. But when the interface is curved, the numerical value
of the interfacial tension varies with the choice of the dividing
surface, reflecting the fact that the "area of the interface"” is
no longer a well-defined property. In the case of nematic ligquid
crystals, we have seen in Chapter 2 that the pressure and hence
the stress tensor change according as the nematic is
orientationally deformed. Therefore, it becomes in general
necegsgary for our purpose to congider curved interfaces. In view
of the application to a ligquid crystal interface, we will here
focus our attention to a "cylindrical interface", following the

Gibbs approach based on the dividing surface.

4.1.1 The dividing surface and the definition of surface excess

Suppose a cylindrical interface between two distinct ordinary
fluids (a and b), which are
in complete thermodynamic and
mechanical equilibrium (see .
Fig.4.1). We assume here that
the £fluid is uniform over
¢ylindrical surfaces concen-
tric with the interface;
namely, the contours cf egual
density, etc., coincide with

those c¢ylindrical surfaces.

Ve congider a fan-shaped %
region with unit thickness

subtending an angle w. We FIG.4.1. Geometry of cylindrical

take the cylindrical bounda- Interface.



ries with the radii, Ra and Rb’ as shown in Fig.4.1; at this
gtage, the choice of Ra and Rb is arbitrary, provided they are
well inside the bulk phase. Then, the volume V of the fan-shaped

region within those c¢ylindrical boundaries is given by
- 2 _ 2
vV = w(Rb Ra 3/ 2. (4.1

We place the dividing surface at the radius R as illustrated

in Fig.4.1, diwviding the volume V into Va and Vb as

V=V, +V
a b (4.2)
where
- 2 2 - 2 _np2
Vo = W(R® - R,“)/2, and V= w(R,“ - R%)/2.

Now 1let X be an arbitrary extensive variable of the sgystem
pertaning to the volume V, and X, and Xy be its densities in the
bulk phases, a and b, respectively. We define the surface excess

X% of the property X via

5 . - -
X5 = X -V, x, - Vp xp. (4.3)

Namely, the surface excess stands for the residue when the fluids
in c¢ontact are assumed to be completely bulk like right up to the
dividing surface. In general, therefore, the surface excess is

dependent on the position of the dividing surface.

4.1.2 Thermodynamics of a fluid interface

We consider the Helmholtz free energy F of the fluid within
the wvolume V, and assume that F is a function of T (the absolute

temperature), R Rb, W, and the number of moleculeg of i-th

ar
species Ni {i=i~r); the fluid in guestion is assumed to be of
multicomponent, comprised of r different species, We denote the
pressures in the bulk fluids by Pa and Pb {they are not in general

identical for curved interfaces, as mentioned above). The entropy



and the chemical potential of the i-th species are written as 8
and By respectively.
For infinitesimal changes of T, Ni' Ra, Rb, and w, the
change of the Helmholtz free energy is written as
dF = ~ 8dT + £ n,dN,
Lo (4.4)
where

’ 1/ L4 h

In Eg.{(4.4), the last three terms represent the external work
asgociated with the geometrical changes of the fluid volume. In
particular, 74w represents the work when the angle of the cone

is changed, while other variables are kept constant; this can
obviously be defined without ambiguity regardlegs of the choice of
the dividing surface. Integrating Eq.{(4.4) with regpect to

under fixed T, iy, Ra, and Rb, we obtain
¥ = Z “iNi + R, {4.5)

By using the area of the dividing surface A=wR instead of w

and noting Egs.(4.2) and (4.5), we can rewrite Egs.(4.4) as

dF = - S4T + X ltidNi
{(4.6)
- Padva - Pbdvb + 7vdA + AL dR,
where v and £ are given by
£ = (P, - P - /R = 97/0R. (4.8)

Note that Eq.(4.7) is just the expression to be obtained when
57 R, Pa' and Pb. Then by
using Eq.(4.7) in Eq.(4.6), we arrive at the Gibbs-Duhem equation

Egq.{4.6) is integrated at constant T, u



which reads

Ady = - 84T - £ Nidﬂi
+ VadPa + Vbc}Pb + AZdR.

(4.9)

It is clearly seen from Eq.(4.6) that 7 has a meaning of the
"interfacial tension”, expressing the free energy increase
regulting from a unit increase of the area of the interface. As

readily found in the standard textbooks of thermodynamics [461],
g = F ~ 3 ﬂiNi (4.10)

is the thermodynamic potential, which in a bulk £fluid reduces

to ~ PVY. Hence Eq.(4.7) can be rewritten as

r=l Q- Q, - Q, I/, (4.11)

This expression shows that the interfacial tension is Jjust the
surface-excess thermodyvynamic potential per unit area Q8%/a.

I+t is worth emphasizing at thisg point that the interfacial
tension o0of a curved interface depends on the position of the
dividing surface R, as c¢an be seen in Egs.(4.7) and (4.8);
in Eq.(4.6), however, the free energy itself is independent, as it
should be, of the choice of the dividing surface, because of the
presence of a term which depends on 4R. This feature originates
from the fact that the area of a curved interface can not be given
unambiguously, independent of the dividing surface, as in the case
of a planar interface. In fact, when the interface is planar, so
that P, = P, and R—>°0, it is easily confirmed in the above that
the interfacial tension does become independent of R.

In the bulk of a "homogeneous"” multicomponent f£luid, the

pressure P gatisfies the Gibbs-Duhem equation,
dP = sdT + = ;}idui, (4.12)

where s and gy are the entropy and the molecular number



densities, respectively. Applying this equation to the present
bulk fluids =a and b, we may rewrite Eg.(4.9) in a surface-~

thermodynamic form:

Ady = - s%ar - = Ng dpy + AZAR, (4.13)
where

SS

#

S - SaVa - Sbvb,

it

s . -
Ny = Ny - paiVa — Ppy¥y.

On the unit area basis, Eq.(4.13) is further rewritten as

dr = - 8%aT -~ T I';du; + {4R, (4.14)

where Fi N?/A represents the adsorption per unit area of the
i-th species with respect to the dividing surface, and the surface
entropy (that is, the surface-excess entropy per unit area) is
here denoted by the same symbol S® as before for economy of
notation. Eguations (4.11) and (4.14) constitute the basis of the

thermodynamics of a fluid interface.

4.1.3 Thermodynamic relations

A. Gibbs adsorption isotherm

We shall first concentrate our attention the processes which
occur at constant temperature, in order to see how the variation
of the fluid composition influences the interface property.
According to the Gibbs-Duhem eguation for a bulk phase, cf.

Eq.(4.12), the chemical potentials are shown under this condition

to satisty
pqdu, + Padity + padpg + ... = dP. (4.15)
This equation applies to both phases being in contact. Then,

subtracting the egquation for the b phase from that for the a

phagse, we obtain (since chemical potentials are identical in both



phases)
&,Oldﬂ.l + Apzd#z + A‘)Bdaa + ... = d(Pa‘”Pb)p (4.16)

where

By using this relation, Eq.{(4.13) is reduced at fixed temperature
to

N, 8 Ap,
Ady = - —% a(P_-P,) - = [ N§ - —4 NS ) dau,; + ALGR,
Apl &pl
(4.18)
where we have assumed é&plﬁo. It is noteworthy that the term in

the sguare brackets is independent of the choice of the dividing
surface. To see this property, we would recall the definition of
surface excess, i.e.,
- ]
Ny = PaiVa * PpiVp + Ny
Differentiating by R the both sides of this eguation, we

immediately have
d 8
O:AApi.‘-dRNi'

which is wvalid for any i, since Ni's are by definition constants
independent of R. Eliminating A with the use of the equation
corresponding to i=l, we reach the desired result:

d Ap; d

i — Nf = 0, (4.19)
dR Ap,; @R

which shows that the guantity in gquestion is really an invariant.
It can also be confirmed directly by way of Eg.{4.7) that the

remaining part is independent of R, as required.

1. Two~component f£iuid
It is now convenient to take the dividing surface in such a
way that the adsorption of the first component vanishes, i.e.

Flzo. So, we can simply write Eg.{(4.18) asg



dr = - 1M,du, + £dRo, (4.20)

where the superscript "1" implies that F1=0 {at R=Rs). Thus, we

ebhtain
ar
—_— = - i (4.21)
ol 2
2" T,R"R=Reo
This is the Gibbs adsorption equation for a curved interface. In

the c¢ase of a plane interface, the 1left hand side becomes
independent of R, resulting in the standard form of the Gibbs
equation. It must be remarked here that the "Gibbs phase rule" [8]
indicateg that the region of a two-phase coexistence of a two-
component fluid can be spanned by either two or three degrees of
freedom depending on the interface is planar or curved; =s0 that
when the temperature is fixed, at least one of the pressures of
the coexisting phases has to change as the composgition is varied,
although the pressure does not apparently appear in Eq.(4.21).
Namely, in the two-component «case, it is impossible to fix
temperature and pressure all together, while c¢hanging the
concentration,

To be a bit more specific, 1let us consider a 1liquid-vapor
interface of a two-component fluid, regarding the vapor phase to
be an ideal gas. Then, by denoting the partial pressures of the
first and the second components by Py and Pg- respectively, we can

write the chemical potentials as [71]
my = ET 1in p; ¢+ xi(T), i=1l or 2, (4.22)

where k 1is the Boltzmann constant. Using this expression in
Eq.(4.21), we get

P2 (..?.1

) ! = - 11‘“2. (4.23)
kT\9P,/ ¢ g lR=p,

4 - 10



This equation shows clearly that when the introduction of the
gecond component igs to reduce the tension of the interface, there
must be a net positive adsorption of the second component at the

interface.

2. Three-component fluid

Next we consider an interface between two immiscible liquids,
each containing a small amount of solute (third component) as
illustrated in Fig.4.2. 1In contrast to the two-component case,
the phase rule now allows the temperature and pressure to be kept
constant even when the concentration of the third component is

changed., Thig case ig of particular importance for our purpose,

in that it esgentially

gimulates the liquid i

crystal-substrate inter-
face with which we are

presently concerned. In

this resgpect, we will §,.

refer to the fluids of

-
S M e i -

radial distance R
firgt and second compo-

nents as the "substrate”
and the "solvent”, re- -?IG.AIV.'Z. Co-ﬁ'tzenni:'ratuions iﬁéax the;
spectively, here. interface.

We imagine that the
solution is ideal with regpect to the third component, 80 that we

can write the chemical potentials of the golvent and the solute as

By = lo - kT c, {4.24)

Ly = KT In ¢+ P, {4.25)
where ¢ = p3fﬁ>2 is the concentration of the solute, and o
denotes the chemical potential of the pure solvent. P is a
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function only of the temperature and presgsure. It is easily
verified that Egs.(4.24) and (4.25) indeed satisfy the Cibbs-Duhem
equation {Eq.(4.12)] at fixed temperature and pressure.

Upon taking the dividing surface such that F1=0, we
substitute Egs.(4.24) and {(4.25) into Eg.(4.18), and obtain

;{%( -g-g-) - RIR-R - KT lrz)z - 1r,. (4.26)

P, =Ro
This equation shows that the adsorption of the solute at an
interface between immiscible 1liquids is dependent on the
adsorption of the solvent ag well as on the susceptibility of the
interfacial tension to the solute.

It must be finally pointed out that if it can be assumed that
the third component is not soluble in the substrate phase (made up
of the first component), the solute does not affect the
thermodynamic state of the substrate fixed at constant temperature
and pressure, As a result, by taking the dividing surface at the
zero adsorption of the solvent, we can write the adsorption
equation for the three-component £luid in the same form as that
for the solvent-solute two-component system, now at a constant

pressure.

B, Surface entropy and surface esnergy

Let us consider an interface appearing in a single component
£iluid, e.g. liguid-vapor, nematic-isotropic, etc. With a dividing
gurface taken at the point of zero adsorption, we have from
Eg.(4.14)

(-g-;-)a= - g8, (4.27)

In the case of a plane interface, the left-hand side of

this equation is an absolutely measurable quantity, and when it is
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negative, the surface entropy should be posgitive; this implies
that the interfacial transition layer is less ordered than the
bulk phase, It is indeed a common observation that the surface
tengion of a pure liguid, away from the liguid-~vapor critical
point, approxXimately follows a 1linear relationship with

temperature {101]:
¥ = Yo - 8o T, (4.28)

with So being a positive constant [Fig.4.31]. Then, it follows
from the thermodynamics that S, ig just the surface entropy s8 .
The internal energy U of the system is related to the
Helmholtz free energy F and the thermodynamic potential O via
U=F+ T8 =Q+ 2 u;N, + TS. Therefore, by taking the surface

excess per unit area, we obtain

US = ¢ + T uy0, + 8%, (4.29) ~
o
For a single component fluid with -g
-
the dividing surface taken at zero @
adsorption, this equation is 8
O
rewritten, in view of Eq.(4.28), “g
as @ .
U = ¢y + 78% = ¢y - T(._a_f.) temperature T
aT %. . __
F1G.4.3. Typical temperature
(4.30) dependence of surface tension.

When the surface tension gatigfies Eg.(4.28), this eguation
reveals that the gurfacse energy us simply equals 7o, which is a
congstant independent of temperature. This implies that the linear
temperature dependence ¢of surface tensions is essentially an
entropic effect which derives from the enhanced gtructural

"digorder” of the surface region compared with the bulk phase.
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4.1.4 The Laplace equation and the surface of tension

As already mentioned, the interfacial tension of a curved
interface can not be defined uniquely without reference to the
dividing surface only from a thermodynamic point of view,
However, the surface or interfacial tension is originally a
"mechanical® concept which was first introduced by Young [1il1] to
expound the balance of force at an interface. It is, therefore,
of interest to see how the thermodynamic and the mechanical
concepts of interfacial tensions are connected to each other.

Congider now the mechanical egquilibrium of the region shown

in Fig. 4.1. L,et us also
imagine that an interfacial
tension ¢ is acting just at
the interface located at R
[gee Fig. 4.41, and we con-
ceive that the pressure is

uniform within each region

divided by the interface.

The condition of mechanical e -
FIG.4.4. Definition of the

equilibrium can be most surface of tension

readily obtained by con-

gidering & shell of infinitesimal thickness around the interface.
Then, the region in question is now comprised of three parts, two
bulk phases and the shell. Cbviocously, the bulk phases separated
by the shell should be in eguilibrium in themselves. Therefore,
it is only necessary to consider the equilibrium of the sghell.
Because the total force acting in the x direction should be zero,

we obtain

w/2
0 = R(Pa - Pb) J. cos¢gp d¢p =~ Zrsinw/2,
-w/2
= ZR(Pa - Pb)sinwfz - 2rs8inw/2,
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from which we obtain the "Laplace eguation” for a c¢ylindrical
interface [5]:
'3
Py - P = ;; ' (4.31)

As it appears, the Laplace equation can be viewed, on the one
hand, as relating the curvature of an interface to the pressure
difference across the interface. On the other hand, however, it
can also be regarded as giving a "mechanical definition™ of the
interfacial tension ¢ in terms of the pressure difference and the
curvature. Unfortunately, the interfacial tension appearing in
Eq.(4.31) is not necessarily identical with that defined
thermodynamically [Eq.(4.7)1; indeed, at a fixed pressure
difference, the former is linearly dependent on R, while the
latter is nonlinearly. Only in the limit of plane interface, the
Laplace egquation becomes indeterminate and is thus trivially
compatible with the thermodynamic definition.

We have derived the Laplace eguation as if there were an
infinitesimally thin boundary-layer which can sustain tensile
force, So, the above mentioned fact indicates that not all the
thermodynamical interfacial tensions do not allow a simple
interpretation as a tensile force acting at the dividing surface.
In order to reconcile the mechanistic and the thermodynamic views
of an interfacial tension of a curved interface, we need therefore
to take the dividing surface at a special point called the
"surface of tensgion." By comparing the Laplace equation with the
thermodynamic formula Eg.{(4.8), we see that the surface of tension

corresponds to the dividing surface for which

or
R /1,p,V,N,

where ¢ is the thermodynamic interfacial tension given by
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Eq.(4.7). We will denote by R; the R which satisfies the above
equation and the corresponding interfacial tension by Tg- From
Eq.(4.32), it readily follows that on taking the dividing surface
at R,, we can treat a curved interface in a formally similar
manner as a plane interface. As will be shown later, +this
property still holds for a nematic interface; however, Eg.(4.32)
becomes no longer true, because of the orientational anisotropy of
the nematic liguid crystal.

The interfacial tension depends in general on the curvature
of the interface. In fact, we know from Eq.(4.14) for a single
component fluid with the dividing surface taken at the point of

zero adsorption that
ay = [(Pa“Pb) - 7Y/Rol dRo. (4.33)

On the right-hand side, dRo represents the change of the curvature
0f the interface induced by the variation of pressure, etc.; do
not confuge it with the (non-physical) formal change of the
dividing surface. When the surface of zero adsorption coincides
- with the gurface of tension, the term in the square brackets
vanishes due to the Laplace eguation, and hence the interfacial
tengsion becomes an invariant irrespective of whether the interface
is planar or curved. Convergely, therefore, unless R, always
equals R,, the interfacial tension is to actually vary as the
curvature is changed. In order to take a closer lock at the
curvature dependence, we rewrite the interfacial tension,

Eg.{(4.7), as

1 R R
2 Rs R
where we have used Eq.(4.31}). Then, by taking the total

differential of the above at R=R. and comparing it with Egq.(4.33),

we have
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Ry o7, Ro? - R %

- . mmfw*m*§§* (4.35)
R R .

Tg BRS g * Ro

This equation describes how the tension of a cylindrical interface
changes as the fluid cylinder thins.

For the more interesting cases of spherical drops, the above
argument can be straightforwardly extended to give the Laplace

equation for a spherical interface

T
Pa - Pb = 2 — (4.36)
Rs .
and
3 3

R o 2(R - R.7)

a RLAN B L (4.37)

Tg 3Rs Rg” + 2R .

which corresponds to Eq.(4.35); the thermodynamic interfacial
tengsion of a spherical interface ig given by the same formula
Fg.{(4.7) as that for the cylindrical interface. Formal integra-
tion of Eq.(4.37) leads to the Gibbs~Tolman-Koenig-Buff egquation
{5] for the curvature-dependence of the interfacial tension.

Up to £irst order in I/Rs, Fgs.(4.35) and (4.37) can be

rewritten as

R ar &, /R, for cylinders,
Rs 9Tg | ( oo/ Rg (4.38)
T4 ORg4 28 6/Rg, for spheres,
where
& = lim (Ro -~ R_1J.
oo R;——»og ° s’
Hence, integrating Eq.(4.36), we obtain
7o exp(~8°°/R3), for cylinders,
Tg = ( (4.39)
Yo exp(~28,/Ry,), for spheres,

where 7, denotes the tension of the plane interface. As both Reo
and RS lie within the interfacial transition 1layer, the above

equation shows that the interfacial tension remains virtually

4 - 17



constant, until Rg becomes so small as to be comparable with the
thickness of the transition layer.

Since the liguid-vapor interface is known to be a few-
moilecular laver thick at a point far from the critical pointil3l},
the interfacial tension can be, to a good approximation, assumed
congtant for a system of macroscopic dimension. In the case of a
nematic~isotropic interface, however, the interfacial tension is
on the order of 10“5 J/m2 {13-18}, about 1/1000 of the surface
tension of ordinary 1liquids, and alsoc the thickness of the
transition layer, vwhich is mostly governed by the orientational
correlation length, reaches a few hundred angstroms due to the
nearly second-order nature of the nematic-iscotropic transition
{19,201]. Hence, the curvature effect is expected to manifest
itself even in relatively large droplets and thereby play a
significant role in the nucleation of new phase at the nematic-
isotropic transition. However, very 1little is known on this

matter at present.
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4.2 The equilibrium shape of a nematic interface

In the above argument, we have seen that the shape of a fluid
interface is determined such that the mechanical equilibrium of
the phases in contact is established, and among others that the
shape itself brings about a deep conseguence on the thermodynamic
treatment of the interface. So, it is obviously quite important
to have a fair understanding of the geometry of the interface in
guesgtion, prior to detailed thermodynamic discussions. We will
now briefly investigate, from a mechanical wview point, the
relationship between the degree of deformation occurring in the

nematic and the resulting distortion of the interface which 1is

assumed to be planar in the absence of deformation [see Fig.4.51.

of an interface between an
isotroic fluid and an orien-
tationally deformed nematic.
0%, denotes the rr-component
of the Ericksen stress tensor.
iSOfl’O{)EC fluld The interfacial tension ¥ is
acting at the surface of ten-
sion located at R.

nematic

R

The overall shape of the interface depends not only on the
pressure difference across the interface but alse on what
conditions are imposed at the circumference of the interface; in
this respect, the cylindrical interface we have considered in the
former section turns out to he a special case which may be
attained when the interface is suspended over a long rectangular
hole. In general, it can be shown that the interface adopts a
shape which has a constant "mean curvature,” as well known in the

equilibrium-shape problem of a suspended soap F£film{l12]. At

4 - 19



present, however, we imagine, without going into the detail, that
a proper boundary condition is always imposed at the circumference
s0 as to let the interface be cylindrical when the nematic is
deformed. We alsc conceive that the volume of the nematic in
gquestion is always in contact with a large reservoir of the
undeformed nematic held at temperature T and pressure P with
prescribed concentrations. We shall further assume that the phase
with which the nematic is in contact is an isotropic fluid whose
thermodynamic state can hbe completely specified by its
temperature, pressure, and concentrations, so that the state of
this phase is indifferent to the orientational state of the
nematic once the state of the reservoir is given,

We take the cylindrical polar coordinate with the z-axis
parallel teo the interface, and assume, as before, that the
property of the system, including the orientation of the nematic
melecules, is invariant with respect to the rotation and
translation about the 2z-axis; g0 that we are to consider only the
case of an interface which imposes a uniform orientational

boundary condition on the nematic being in contact.

e
rr

Then by applyving the same argument as used to derive the Laplace

Now, let ¢ be the rr-component of the Ericksen stress.

equation in the last section, we can write down the condition of

the mechanical equilibrium of the interface as

e =
“Opyp = Py = 7/R, (4.40)

where 7 igs the interfacial tension of the deformed nematic
interface, which has as yet been defined. From the hydrostatics
of nematics described in Chapter 2, we can rewrite Eg.(4.40),

under the condition of no external field, as
-r@ - = ‘

where P stands for the pressure inside the nematic reservoir.
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From our requirement that the interface be planar (R—>®) in the
absence of deformations, we must have Ph = P; the first two terms
disappear when the nematic is in the undeformed state and hence
the interface is planar. Since P and Pb are constant regardless
of the degree of deformation (because of the constancy of

temperature and chemical potentialsg), we are left finally with

~Cyr fd = 7 /R. (4.42)

This equation in principle gives the g¢curvature of the
(cylindrical) interface in terms of the orientational strain.

To proceed further, let us first note the fact that, for a
gystem with cylindrical symmetry, the strain energy density fd can

be written in the following form:

£4(E) = £o(N, 3N/ Jr) + £,(N, 3N/ Jr)/r + £,(N)/12,

(4.43)
where the first term is the gtrain energy density corresponding to
the case of zero curvature, 1.e. R—»®, and the second and the
third are the terms preoportional to 1l/r and 1/:2, respectively,
and hence they vanish when R-»00, In terms of the components of
the director in regpect to the cylindrical coordinate, fo, fi' and

fz are specifically given by

1 gonp? 1 an on,
fa{h, g0/ 3r) = 5 Kl(-a-';) + 5 KZ{nz —a—;ﬁ - ng e 1
2 2 2
1
.t K3nr2{(§3~r) . (2 ) s (93—2) 1, (4.44)
2 or or or
on on on
£,(N, 9N/ = K =T + K -2 .5 Tz
1 on/ gr) 1Py - + znznqﬁ[nzar ng o ]
2 Ong 2 90y
+ K3[nr ng - - by nrar 1, (4.45)

and
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i 1
2 2 2 2
+ :?“ Kz(nzn¢) + E K3n¢ (n¢ + nr ).

(4.46)

Note that f. corresponds to the deformation energy density

fz(h) = Klnr

| I

calculated asg if the interface were planar. Similarly, according

to Eq.(2.00), Ggr can be divided into two terms as

é . d 4
Orr = Opp, ¥ grrlfr' (4.47)

where in the present geometry, in particular, we have

d

od._ = -2 foln, 3N/ 3m), (4.48)
agrl = - £,(N, 3N/ Jr). (4.49)

Then, by combining Eqs.(4.42), (4.43), and (4.47)-(4.49), we get
fo - £,/R% = 7 /R, (4.50)

where fo angdg f2 are to be evaluated at r=R in the Gibbs' spirit;
that is, by extrapolating the bulk orientation of the director
to R. Equation (4.50) 1is the nematic version of the Laplace
equation.

By solving Eg.(4.49), the curvature 1/R is given by
2fo

- (4.51)
T o+ (12 + 4fo£,) 172,

Ao

It is here illustrative to expand the above expression in terms of

a (usually small) parameter & = (fof2)1/2/7 to give

£
= — [ 1 - 62400 1. (4.52)
r

Then it follows immediately that, up to first order in &£, the

curvature of the interface is given by

1/R = £o/7. (4.53)
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The parameter of expansion £ has a rather clear physical meaning:
Let A be the characteristic length of orientational deformation,
over which the director changes its direction appreciably, and K
be a typical Frank constant; then, in view of Egs.(4.44) and
(4.46), we can have an order of estimate of ¢ as

£ ~ K/(2rA) ~ A/R. (4.54)

Therefore, we can conclude that the higher order corrections to
Eg.(4.53) will be important only when A gets so small that R
becomes comparable with A; note that R itself is of the order of
A% and hence of & 2.

To make the point more specific, let us take K=3x10"11 N,
=30 mN/m, which are typical values for the elastic congtant and
the surface tension of nematics, and assume that the deformation
is occurring typically over A=l um. Putting these values in
Eq.(4.54), we obtain £=5x10"% and R=2 mm. This shows that at a
free surface of nematics, Eg.(4.53) holds to a good approximation
for virtually all realistic cases. For an interface between
nematic and isotropic phases, however, which has commonly an
interfacial tension on the order of 10"2 mN/m, £ becomes as large
as 0.5 (R~2 um) under the same condition as above, indicating
the need to retain the higher order terms. At a real nematic-
isotropic interface, however, a number of other factors influence
the shape of the interface [17,21-23], before the approximation in
question actually breaks down.

Finally a word of caution is in order as to the meaning of
the interfacial tension 7, which has been used without explicit
definition in the above. We have started the present argument
with the condition of mechanical eguilibrium of the interface,
conceiving that 7 is a tensile force acting at the point R. Asg
in the case of ordinary fluids, therefore, R is to specify the

position of the "surface of tension" for the nematic interface,
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when v is chosen to bhe compatible with the thermodynamics. It is
thus noteworthy that the mechanical formulasgs as Egs.{(4.50) and
{4.53) offer an essentially distinct perspective ag regards the

interfacial tension, independent of the thermodynamics of the
interface to be discusged below.
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4.3 Orientational thermodynamic variables and thermodynamics

of bulk nematics

A thermodynamic treatment of a macroscopic body begins
invariably with counting out all the thermodynamic wvariables
needed to completely specify the state of the system in question.
One of the most fundamental assumptions of a traditional treatment
of £fluid interfaces is that the equilibrium state of the interface
is attained automatically once the state of the bulk phases 1is
specified; 80 that the thermodynamic variables for the bounded
system are assumed to be completely identical with those for the
bulk phase. Based on this assumption, therefore, it is only
necessary Lo consider the thermodynamic variables relevant to bulk
nematics,

As desgcribed in the previous chapters, the nematic ligquid
crystals have a long-range orientational order, vyet still lacking
a translational periodicity. Consequently, the equilibrium state
of a nematic ligquid is to depend not only on the temperature, the
volume of the container, and the number of molecules in it, but
also on the "orientational boundary condition” at the c¢ontainer
wall and on its "shape" as well through the curvature elasticity
of nematics. In its most general description, the orientational
state of a nematic may depend on the director and its derivatives
of all orders at the boundary. Here, we will base our argument on
the Frank theory of curvature elasticity, by resgtricting the
attention to the small deformation regime. Since the Frank
theory is a &kind of 1linear elastic theory, the number of
orientational degrees of freedom will be greatly reduced, thereby
making the problem mathematically tractable. The purpose of this
section is to set out the most convenient set of thermodynamic
variables to specify the orientational eguilibria of nematic
ligquid crystals, and to discuss the thermodynamics of deformed

bulk nematics.
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4.3.1 The equilibrium configuration of the director in the bulk

nematic with cylindrical symmetry

As described in Chapter 2, the equilibrium director profile
should satisfy the Euler~-Lagrange equation, which derives from the
Frank elastic energy functional. Based on this equation, we will
here work out some characteristic features of the director
profile, which the nematic in question is expected to have when it
is deformed with c¢ylindrical symmetry. Since we are only
concerned with the bulk property, it is completely immaterial
whether or not the elastic energy density involves terms resulting
from the so-called "second order elasticity.” Here, we conceive
deformation processes in which variables other than the director
is kept constant.

Suppose a region of bulk nematic as shown in Fig.4.6. Taking
the c¢cylindrical coordinate system, the Frank elastic energy of the

region Fd ¢can be written as

R
2
Fd = J’ {fo{n,dN/dr) + fl(n,dn/dr)/r + fz(n)irz ] rwdr.
Ry (4.58)

where fo, fl’ and f, are the functions of the components of the
director and their derivatives, defined in Egs.(4.44)-(4.46),
Then the director profile in
egquilibrium can be in
principle obtained under an
appropriate boundary condi-
tion by directly applying the
variational calculus to F,.

in order to see the gqualita-

tive features of those direc-
tor profiles, however, it is FIG.4.6. Cyiindrical region of the

far more convenient to work bulk nematic.
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with a new variable t defined by

t = 1n r. (4.56)
Since fo, fl' and fz are, regpectively, second, first, and zero-th
order homogensous functions of dR/dr, it is readily shown that F,

can be rewritten in terms of t as

t
2
Fq = J.I folN,dN/dt) + £,(N,dN/4L) + £.(0) 1 wdt,
ty (4.57)

where £fo,{(N,dnh/dt), etc. are the functions defined by Egs.(4.44)-
(4.46) in which dh/dr is merely replaced by dNh/dt, so that, for
example, fo(h, dN/4t) = rzfo(h,dh/dr). The Euler-Lagrange

equation determining the equilibrium director profile now reads

d L L
a Oy 0 g _ n,, (4.58)
dt J(dng/dt) ony

where Ld = fo + f1 + fz, and the subscript i refers to either r,

¢, or z, and h is the Lagrange multiplier to assure nz = 1,

A. Director profile as a trajectory on a unit sphere

Ag noted by Thurston [24], a director profile, when it
changes only in one dimensiggf_ S§nwpe regarded as a trajectory of
a particle moving on a o o
unit sphere, Though
this analogy with a dy-

namical system adds

nothing essentially new FIG.4.7. Unit sphere

representation of an
equilibrium director
profile.

z

to the information con-
tained in Egs.{(4.57),
(4.58), etc., it is ex-
tremely powerful to vis-
ualize the character- l

istic features of the
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profile and thus to classify various profiles according to their
giobal properties.

In this analogy, the director R corresponds to the position
of the particle, t to the time, and Ld to the Lagrangian. Accord-
ingly, the HEuler-Lagrange equation, Eg.(4.58), turns into the
equation of motion for the particle. Let us now introduce a unit
sphere, as illustrated in Fig.4.7, on which the director is to be
plotted as a function of t. in the figure, z~, «r~, and ¢P-axes
ghould be understood asg expressing the same directions as in
Fig.4.6. Therefore, the point A, which is physically equivalent to
the radially opposite peoint A' because of the equivalence of h
and -h, «corresponds to a director which is normal to the
c¢ylindrical surface. The peoints on the eguator, on the other hang,
express those directors which are tangential to the cylinder. For
the sake of later calculations, we will occasgionally utilize the
spherical polar coordinate (©,%) as also defined in Fig.4.7.

At present, the Lagrangian L4 consists of three terms fo, £,
and f,. And, if we restrict ourselves to a region of the nematic
not very far from the interface, i.«, r/R = 0(1), we can

approximately write

R -1
~ — = g"L, (4.59)
A

Then, considering the definition of fo, fl, and fZ’ we readily
have

fo(N,dN/dt)/K ~ 0(e™%),

£,(N,dNn/aL)/K ~ o(e™ ),
and

fz(n)/K ~ 0(1),

where K stands for a typical value of the Frank elastic constant.
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From the above, we obtain
Ld(n,dn/dt) = fo{M,dN/dE)I1 + 0(g)]. {4.60)

Then, it follows that, for sufficiently small deformations and/or
gmall interface curvature, we can neglect fl and fz terms in
comparison with £fo in the Lagrangian; in other words, the director
profile can be treated, +to lowest approximation, as though the
interface remain planar even when the nematic is deformed. It
must be emphasized that this result is nonetheless nontrivial,
but intimately related to the fact that the radius of the
interface R should diverge more rapidly than the characteristic
length of deformation A according as the deformation weakens.

In a dynamical system, there usually exist several
congervation laws resulting £from the inherent space-time symmetry
of its Lagrangian. Now it is a straightforward task to see by way
of Eg.{(4.44) that Ld, as approximated above, remains unchanged
under transformation of t and rotation of N about the r-axis,
S0, the Hamiltonian H given by

aLd dn,

H=2X E S Ly = fo(N,dn/dt)
i 9ldn;/dt) dt

r?fo(N,dN/dr), (4.61)

and the r-component of the angular momentum,

aL3 aLd
Hr = n¢ - nz (4-62)
B(dnz/at) 8(dn¢/dt),
dn dn
- e & 2 -2z 9
—{Kz(l n,. )+K3nr }(n¢dt nzdt 3,
are both to be conserved along each allowed trajectory. This

property can be easily confirmed by a direct calculation, if Ld is

expressed in terms of O and ¢:
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1 a@\ 2 ad\ 2
Ld = - K3[f(@(-9 + g(® —~9 1, {4.63)
2 dt ét
where
£(O) = (K,5in0 + Kycos20)/K,,
g{(®) = sin @(Kzsin 0 + Kycos @)/Ka.
Because Mr is written as
M K.g{(@) a% (4.65)
- g Eaammanad .
r 3 at

r

in terms of those angles, it follows immediately from the Euler-
Lagrange equation for ¢ coming from Eg.(4.83) that Mr is indeed
constant in equilibrium. It is alsoc notable at this stage that,
while the Hamiltonian remains to be a constant of motion even when
fl ang fz are included, (though it is no longer egual to Ld as
above), Mr can be strictly constant only when they are neglected.
The general solution of the eguation of motion should contain
at pregsent four arbitrary constants, corresponding to the initial
position and the velocity on the unit sphere. From the above
argument, it is now clear that two out of the four constants are
H = Ld and Mr. Furthermore, since the Lagrangian is, as we have
already seen, invariant with respect to arbitrary shift of tinme
and rotation about the r-axis, we are generally allowed to write

the equilibrium director configuration in the form,
n = T(@o)ns(t-to,ﬂ,ur), (4.66)

in terms of a special solution n8 of the Euler-Lagrange eguation
with given H and M. Here, T(¢,) denotes an operator to rotate
the director about the r-axis by an angle ¢,.

In order to further simplify the above expression, it is

helpful to consider a scaling of t like

t - kt. (4.67)
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Upon application in Egs.(4.61) and (4.62), we readily see that H

and Mr transform as

H = x 2H, and Mo > kML (4.68)

Consequently, by taking & = Hllz, we can finally rewrite

Eg.(4.66} to give

n = 'r(@o)nsm”z(t—-to},1,urﬁ‘1’21. (4.69)

Thig expression shows that trajectories having the same MrH"1/2
are isomorphic to each other by an appropriate rotation about the
r-axis, apart from the scaling and the translation of t.

As far as the geometrical features are congcerned, we can
therefore characterize any allowed trajectory by a gingle
parameter MrH-l/z. We will introduce here a dimensionless

parameter B via
B = M 2/ (2K H). (4.70)

Then any eqgquilibrium trajectory may be expressed in a gimple form

as

n = T(eOn [HY/2(t-to), 81, (4.71a)
or in terms of r as

n = T(¢on (HY 2in(z/ro), B1. (4.71b)

In summary, an eguilibrium director trajectory (profile) is
completely specified by four parameters £, H, Yo, and ®o. The
topology of the trajectory, however, 1is cast into 8 alone; H
tells how fast the director tracesg the trajectory, and ro and ¢.

indicate where to start tracing on the unit sphere.

B. Geometrical properties of trajectories: the meaning of B
In order to appreciate the physgical significance of the

parameter B in some detail, we shall first gquote some results
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concerning the trajectories from Thurston{24] without proof:
(1) Any meridian is a possible trajectory.
[Meridian is a great circle passing the north and the
south poles. Thus, along a meridian, $=%.=const.

and hence B=0; no twist deformations exist.]

(2) The only trajectories through a pole (8=0 or 1) are
meridians.
{Only when f=0, the director can be gtrictly normal to
the surface of the cylinder, c¢f. Fig.4.6.1

(3) A trajectory cannot be tangent to a meridian.
[A twisting of the director about the r-axis, if any.
never change its sense. (dd/4t has a fixed sign for

a given M_.)]

(4) The esguator ig a trajectory.
[The pure twist deformation with ©®=n/2 ig always

possible, if boundary conditions allow.]

{5) There are noc trajectories tangent to the equator.
[Along a trajectory on which d8/dt=0 does not always hold,
d8/dt never be zero at O=0 for any choice of .1}

These properties are schematically illustrated in Fig.4.8.

FI1G.4.8. Basic geometrical
properties of an eguilibrium
trajectery. Trajectories
like (3} and {5) are not
allowed.

equator
{4}

meridia
(E tz}
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In (1) and (3) of the above, we have learned that if and only if
B=0, it is possible for d¢/dt to vanish, resulting in a director
profile in which the rotation of the director is confined within a
plane containing the r-axis. Therefore, in the presence of an
aligning interface, which is of course assumed to have the
cylindrical symmetry, it 1i8 naturally anticipated that such a
planar configuration of the bulk director should exclusively
excite the “out-of-plane” or “"polar"” mode ¢of the orientational
anchorage, regardless of the choices of H and reo. S0, the
director configurations with £=0, or eguivalently the meridians
are to play a special role (as a principal mode of bulk
deformation) in connection with the interfacial properties of
nematics.

From (4) and (5), on the other hand, we know that the
equator, in which ©® is fixed at n/2, is a possible trajectory as
far as the bulk equilibrium is concerned. This configuration may
become a truly allowed one, if the boundary condition is such
that the director is constrained to be perpendicular to the r-
axis. In this special event, in particular, it is expected as
regards the interfacial anchorage that the bulk deformation in
gquestion will excite only the "in-plane” or "azimuthal" mode of
anchorage, in a similar manner as meridians do. As readily
verified from Egs.(4.63)-(4.65), f is in this case equal to
g{n/2). In contrast to meridians (f=0), however, the director
configurations with f=g{n/2) do not cover all the principal
modes related to the in-plane arnchorage; indeed, fB=g(n/2) only
takes care ¢of pure planar alignments.

Hence it is natural and also necessary to ask at this stage
whether or not there is a possible trajectory with constant © for
its arbitrary value other than n/2. Obviously, such a trajectory

with, say, © ig to excite the in-plane mode of anchorage having

e."
the easy axis with 83. Although the answer to this question is
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in general negative as will be shown below, there always exists a
trajectory fwith B=g(®e)] which is tangent to the above
hypothetical trajectory. 8o, it is indeed possible to excite the

in-plane mode alone by means of those special trajectories with

B=g(8,).
In terms of B and §=t(2H/K3)1f2, we can write Eq.(4.63) as
de\ 2 B
£(O)| —— + = 1, {4.72)
az g(o)
which leads to an inequality
g{9®) >» B8, {(4.73)
to be satisfied by ©'s on a possible trajectory. At the point

where the egquality of Eq.{(4.73) holds (at Gt), Eq.(4.72) yields
da0/a&=0. But this does not necegsarily mean that O=constant
along the trajectory. To see this point in detail, let us write

down the Euler-Lagrange eguation for ©:

ate ae 1 ad |2
£(0) + £'(0)— - - g'(8)—
az 2

. 0. (4.74)
az d &

H

This equation shows that only when g(@.)=8 and g'(®,/)=0 are

simultaneocusly satisfied, second and all higher order derivatives
vanish at this point and hence ®=€9t becomes an allowed

trajectory.

In Fig.4.9, g(©) is plotted versus © for some values of

- Ky 1 .
5 | ]
S §
=0.5
0.5+ -
3 #=0.25 T
Om , : | | FIG.4.9. Function g(8) for
o a0 180 various values of Ky/Kj.

@  (deg)

4 -~ 34



KZ/K3. The allowed ©'sg are those beyond the horizontal line
representing g=8. Then, unless © coincides with the extrema of
g(®), © cannot be constant along a trajectory. In general, how-
ever, at the point where g(®,.)=8, d46/4f only changes its sign’
we call this a "turning point” after Thurston{24]. At the turning
point, the trajectory is tangent to a small cirgle on the unit
sphere with a consgtant polar angle @t, and as obvious from the

above argument, the converse is also true, here.

4.3.2 Thermodynamics of bulk nematics

A. Director as an independent variable

As we are asgsuming that the nematic under discussion is
always in contact with a large reservoir of undeformed nematic
with given concentrations, it becomes convenient to work with the
grand thermodynamic potential Q. For the nematic region shown in
Fig.4.6, held between the cylindrical surfaces at r=R1 and Rz
gsubtending the azimuthal angle & with unit length in z-direction,

the cylindrical symmetry of the system allows us to write
Q = Q[n(r):T,w,Rl,Rz,nj], (4.75)

where Mj {43=1~m) are the chemical potentials of the consituents.
At this stage, £ is still regarded as & functional of the
equilibrium director profile N(r), not as a function of B, H,
ts, and .. In view of the anisotropy of the nematic, the
variation of (Q associated with an infinitesimall change of the

thermodynamic state may in general be written as

(4.76)
where SWO represents the external work necess|sary to
infinitesimally change the director profile within the volume from

one eguilibrium to ancther while keeping temperature, chemical
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potentials, and geometry f£fixed, Pl and P2 denote the stress
component normal to the boundary at r=Rl and Rz, respectively.

7 is defined ordinarily [cf. Eq.(4.4})1 via

7? = (agf aw)TranRIJRZrneq.

We shall restrict the present argument to terms lowest-~order
in £ as before, and approximate the Frank energy densityrby £o.
In order to formulate SWO, et us shortly consider those
procesgses which occur by way of the change of the director
profile alone. Under this circumstance, Swo has to be identical
with the change of the Frank energy Fd' As a conseguence, by
applying the wvariational calculus to Eq.(4.57) (retaining only

fo), we obtain

SWO = dF 4 (4.77)

ofo _ ofo

> én; (R,) - TwR; ————
i dan;/dar) I

2 wRZ 5?2::;§;; Rz d“i(Rl)'
The first term in the above represents the orientational work
performed across the {(cylindrical) boundary at Rz, and the second
that across the boundary at Ri' External work through other
surfaces cancels out due to symmetry. Note that n(Ri) and N(Rz}
can obviously be taken independently of each other (as far as the
bulk configuration is «concerned) and are at the same time
sufficient to specify the eguilibrium director configuration at
given environmental conditions (as they contain essentially "four”
independent parameters). So we can regard N(R,;) and N(R,) as
independent thermodynamic variables taking care of the director
configuration inside the nematic.

We shall postulate here that the expression of the

orientational work as given above can be extended as such to more
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general processes inveolving the change of temperature, pressure,

etc. So that, we may write

(4.78)

of o 9fo
dfli{Rl)r

+ WRy mm———— | dn;(R,) - WR; ~——————
dtan;/dr) Iy 3(an;/ar) g

where the subscript i runs over r, ¢, and z, and for descriptive
gimplicity, we have emploved Einstein's rule to imply summation
over 3 and 1. It must be strictly born in mind concerning
Eq.(4.78) that dn;(R,) and dn;(R,) are the "net" differential of
the director at the boundaries located at R1 and RZ' regspectively;
hence, they may change, even though N{(r) is held constant, simply
as a result of the motion of the boundary. According to the
hydrostatics of nematics, therefore, we have to identify Pl and PZ
with the negative of the rr-component of the Ericksen stress
tensor. At R1 for example, we see from Egqs.{2.00) and (4.47)-
(4.49) that up to lowest ordsr in ¢

I e
Pl = grr(Rl)
~ Rl“zﬁ + P, (4.79)

where P is the pressure of the nematic reservoir. In Eq.(4.79), f.o
hags been replaced by H on account of Eg.(4.61), Similarly, 7 is

given by

R, (4.80)
-~ - 2 o, 2
H 1n(R,/R;) - (R,%-r;2)P/2.

Combination of Egs.{(4.78)-(4.80) leads to

4 - 37



d = - 84T - deuj - Pav + H[ln(Rlel)Idw - deln(Rlel)
(4.81)

dfeo ofo
dni(Rl)’

*9R2 Slanzan |, MR T R s

i Rz i R1
where V = w(Rzz-Rlz)lz denotes the volume of the nematic region.
The first three terms on the right hand side are formally the
terms common in the thermodynamics of ordinary fluids, though it
should be noted that the entropy § and the number of molecules Nj
may c¢hange as the nematic is orientationally deformed. The last
four terms are however concerned explicitly with the orientaional
deformations. Clearly they disappear when the nematic ig free
Erom deformations, i.e., £fo=0; in the undeformed state, thereforese,
the thermodynamics of a nematic liquid is no different from that
of an isotropic fluid, being indifferent to the actual orientation

of the nematic director in space.

B. E as an independent variable

In Eq.(4.81), the directors at the boundary have been
untilized as thermodynamically independent variables to account
for +the orientational state of the nematic. As already noted,
they are complete in the sense that they do have one-to-one
correspondence with the equilibrium director profile, and thus
should be c¢omplete thermodynamically as well, Here, we will
attempt to replace these boundary directors with the trajectory
parameters, H, B, ro, and ¢, which are equally useful for the
specification of the equilibrium director profile. We show that
the thermodynamic potential involves H alone as an independent
variable, while others as external parameters, leading to a quite
gimple formulation of the thermodynamics. Although the present
apprecach toward bulk thermodynamics may seem unnecessarily
complicated in the 1light of the rather trivial nature of the

results it finally produceg, it must be emphasized that its
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conceptual c¢clarity provides ug with a systematic way to treat

interface problems in later sections.

We begin our argument with the identity

R
p
[ln(Rzlﬁl)}H = J. fo(T,uj,n,dh/dr) rdr, (4.82)
R
1

which directly follows from the spatial constancy of H in
equilibrium. In the above, the dependence of fo on T and Hj
through the Frank elastic constants has been written explicitly.

Upon taking the total differential of Eq.(4.82), we readily obtain

R2  8fe Sfo
lln(Rzlkl)}dH e {( — 4T + di. ) rér
R or Sﬁj 3
1
+ R 9o (dn,) R 9. (dn;)
e n. - e n, .
2 3tangsaryly t'Ra 1 acangrary i, 1Ry
2 1

(4.83)
where the symbol, (dni)R, denotes the infinitesimall change of ny

at fixed R; terms containing de or dRz cancel out on both sides.

From the definition, (dni)R ¢an be related to dni{R) via

dn.,
dn; (R) = (dn;)p + -+ dR. (4.84)
dr

Substituting this equation into Eg.(4.83), we get

R2  afs ofo
[In(R,/R;)1dH = { =~ 4T + di. } rdr -~ 2HA{1n(R./R,)1}
2°71 5T o) J 2771
Ry K5
ofo of o
S(dni/dr) R a(dni/dr} R
2 1

(4.85)
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where use has been made of the fact that fo is a second order
hoemogeneous function of dni/dr, cf. Eg.(4.44). Finally, a
combination of Eq.{4.85) with Eq.(4.81) yields

R2 /9t Ra/0fo
d@ = - [8 + w (%-—) rdr}dT -~ [Nﬁ + W ( ) rdr]duj
Ry 97 /n R, O#35/n

-~ PdV + Halwln(R,/Ry)1 + [1n(R,/R,)1wdH. (4.86)

This equation is identical with Egqg.(4.8l1) in its essential
content. But it is obviously far more transparent and useful.

To expound some fundamental consequences of this formula, let
us integrate the above with respect to w at fixed temperature,
chemical potential, Rl' and RZ' During this process, P is

apparently constant, s¢ that we obtain
Q = - PV + Htln(RZIRI)Im. (4.87)

The second term is just the Frank elastic¢ energy of the volume Fé,
and the first is the thermodynamic potential in the absence of

deformation Q.. Consequently, Eq.(4.87) reduces to
Q = Qo + Fd' (4.88)

which is a trivial result coming from the definition of the Frank
elastic energy. However, since dQo = - S5o4T - Nogduy - Pdav,

with 5o and Noj being the entropy and the number of molecules in
the undeformed state, respectively, comparison of Eq.{(4.88) with
Eq.(4.86) leads to

J“Rz 3f 3k . (R2 /5f.
So - W (-~) rdr = So - Ww—3 ( ) rdr,
Ry 9T /n oT J g, \K¢/n
(4.89)

Rz afo aK Rz Sfo
Nj = NOj - rdr = NOj =y — q ( ) rdr,

(4.90)

3

it
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which give the entropy and the number of molecules within the
orientationally deformed bulk nematic in terms of the temperature
and the cﬁemical potential dependences of the Frank elastic
constants; the subscript q should be summed over 1, 2, and 3,
corresponding to the splay, +twist, and bend elastic c¢onstants.
Though it 1is in general difficult to express the integral in a
closed form in terms of H, f, reo, and ¢,, we can drawv some

gqualitative conclusions from the above as follows:

(1) As the Frank elastic constants are usually decreasing
functions of temperature, the entropy should increase
when the nematic is isothermally deformed; note that the

integral in the right hand gside is always positive.

(2) When deformed adiabatically, the temperature of the

nematic must be lowered.

{3) For a single component nematic, the density should be
reduced as the nematic is deformed isothermally; because
GKq/ oH = (aKq/ 3P)v Y, (>0 for most cases), with v

the molecular volume,
Especially, when the Frank constants satisfy

}oox, 1 oK, 1 OK3 1 8K (4.91)
KI oX Kz oX K3 oX XK oX,.
where X stands for T or uj, and K some appropriate function of T

and #j' Egs.(4.88) and (4.8%9) assume an extremely simple form as

1 oK
§ = 8§ -~ - - (H, €4.92)
K ar
1 oK
N- = Naj - mm— wH. (4.93)
3 K du

Equation (4.91) is equivalent to regquire that the Frank elastic
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constants be always proportional to each other, thus it in
particular holds when the mean field prediction, 1i.e. chx Qz,
applies. Obviously, similar equations can also be derived, if the
director configuration ig comprised of a single mode of
either splay, twist, or bend deformation.

From Eg.(4.93), we can see an interesting consequence for a
binary mixture. When the concentration of the solute ¢ is so
small that the weak solution formulas such as Eqgg.(4.24) and

(4.25) apply, we can rewrite Eq.(4.93) to give

1 OK c oK
Nl = NOI o —— {&)H, and Nz = Noz T e e ‘A)H;
kTK Q¢ KTK @gc

where the first and the second components refer to the golvent and
the sclute, respectively. So, if the solute is such that the
Frank elasgtic constant 1is reduced as it is added more to the
mixture, the solute ig to accumulate in the deformed region, while
the solvent is to be depleted. This ig in accord with
Le Chatelier's principle. More generally, in a multi-component
nematic, the concentrations are no longer homogeneous when the

director is distributed nonuniformly.
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4.4 Thermodynamic formulation of a nematic interface

In Section 4.3, we have learned that the orientational
thermcdynamic state of a bulk nematic can be completely specified
(within the 1limit of the Frank theory) either by the directors
N(R,) and N(R,) or by H, B, ro, and ®o. And, especially with
the use of the latter set of variables, we could achieve a compact
formulation of the thermodynamics of bulk nematics., Based on this
formulation, we shall here extend the Gibbs thermodynamics of
fluid surfaces to a nematic interface. In the first place, we
identify the orientational thermodynamic variables relevant to a
bounded nematic ligquid, and in the second, we define the surface
excess dquantity with respect to an arbitrary dividing surface in
the case of orientationally deformed nematics. Finally, we derive

the nematic version of the Gibbs equation.

4.4.1 Orientational degrees of freedom of a bounded nematic

Let us consider again a region ag shown in Fig.4.5
circumventing the interface of the nematic with another isotropic
phase. Just as in the same manner as for bulk nematics, we can
write the change of the thermodynamic potential Q@ due +to an

infinitesimal change of the thermodynamic state as

dQ = -~ 84T - deaj + 7dw + P,wR,dR, - P wR, 4R, + 6Wo.
(4.94)
Contrary to Eq.(4.76), however, since only Ra is in the nematic
medium, we have to discard now the first term in Eqg.(4.77) to give
ofo
dWo = =~ wRa e d“i(ga)‘ {4.95)
S(Gni/dr) R
a

In the above eguation, it is of course assumed that Ra is well

inside the bulk nematic, 50 that the concept of the director and
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the PFrank theory hold to a good approximation at the boundary of
the volume in guestion.

In the presence of an interface, it is no longer a trivial
matter to affirm whether N(R,) can be taken independent of other
variables such as T, Hy» etc., or not. In order to investigate
thig point in detail, let us generally write the director

configurations in equilibrium above the interface X as follows:
n = hz(r:T,ﬁj,X), (4.96)

where X 1is a vectorial parameter characterizing the allowed
profiles which are at present supposed to be generated by the
action of a counter boundary placed outside the region under
discussion. The number of the orientational degrees of freedom of
such a bounded nematic is given by the dimension of X. It must be
noted at this stage that due to the Frank theory, the dimension of
X can never exceed four.

In order to determine the dimension of X, it is convenient to
congider a region of the nematic¢ as shown in Fig.4.10 confined in
between a couple of concentric interfaces (21 and 22} which are

geparated by a large dis-

tance. The starting point of
our pregent argument is the
trivial convietion that,
irrespective of the nature of
thoge interfaces, there must
be an equilibrium configura-
tion of the director,

neq{r:T,ﬂj), corresponding

to the free energy minimum at

the temperature T and the e B
FIG.4.10, Nematic liguid crystal
placed between two largely sepa—
is unigue except for some rated cylindrical boundaries.

chemical potential uj, which
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gpecial cases in which the multiple ground states exist.
As the equilibrium configuration must be compatible with both
interfaces at R1 and RZ' there must be some appropriate vectors Xl

and Xz satisfying

neq(r:T,uj) !\El(r:T,ﬁj,xl)

(4.97)

“Ez{r:T"”‘j'xz)‘

Since r\E's themselves are the solutions of the Euler-Lagrange

egquation, Eg.(4.58), it 1is shown +to be the necessary and
sufficient condition for rlzl and !\zz to be identical for all

r, as in Eq.(4.97), that they coincide at two arbitrary points.
Therefore, Eg.{(4.97) essentially reduces to four independent
equations involving two unknowns x1 and xz. In order that those
equations can be uniquely solved for X, and X, at any T and Ko
thereby giving rise to a unique director profile, the condition

Dim(X,) + Dim(xz) = 4 (4.98)

should be met, where Dim(X) denotes the dimension of the vector X.
Furthermore, because the choice of EI and 22 ig arbitrary, we
must have

Dim(X;) = Dim(X;) = 2, (4.99)

reductic ad absurdum to

Eg.{(4.98). This indicates that the number of the orientational

which easily follows by applying

degrees of freedom is two in the case of a nematic liquid bounded
on one of its side by an interface [see "Note" at the end of this
sectionl.

As appreciable from the course of derivation, this is a kind
of phase rule {(pertaining to the orientatiocnal state of a bounded
nematic) analogous to the Gibbg phase rule. As a consequence of
Eq.(4.99), in particular, we are allowed to regard n(Ra)

appearing in Eq.{(4.95) as an independent thermodynamic wvariable.
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S0 that we can write the equilibrium director profile in the

pregence of an interface X in the form,
n = nz(r:'l',nj,n(ta)). (4.100)

In terms of the trajectory parameters H, B, ro, and ¢, on
the other hand, it is readily shown by solving Egs.{(4.61) .and
(4.70) for X along with Eq.(4.96) that we can alternatively write

n = I\E(r:T,nj,H,B), (4.101a)

except for the following two cases: 1) H is always zero (so that
the trajectory shrinks tc a point on the unit sphere), and/or
2) Egq.(4.70) becomes an identity with a constant f.

In the former case, the nematic director is free to rotate as
in an infinite sample, and hence the boundary condition imposed by
the interface is fully degenerate, which is a situation of no
interest to us here. As regards the latter case, it can
immediately be shown that it occurs, even if possible, only at
B=0: This is because, for [B#0, there is a turning point (of the
trajectory on the unit sphere) with non-zero polar angle @t
satisfying 0=g(6.) [Section 4.3.1], so that, when N(R,) which
has @(()t is assumed in Eg.{(4.100), B corresponding to n(Ra}
should be smaller than the original one. Consgseguently, we Sgee
that for such a system which allows only meridians as its

egquilibrium trajectories, £ can be a constant independent of X.
Since meridians are differentiated from each other by the
azimuthal angle ¢ of the directors on it, it is possible to use

¢ as an independent variable in place of A:
n = nx(r:T,nj,H.¢). (4.101h)

The fact that the allowed trajectories are always meridians
is equivalent +to that the system in guestion does not stand a

finite torque around the interface normal {(r-axis). Such a
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situation may arise if there is a cylindrical symmetry about the
r~axis, and hence the corientational boundary condition due to the
interface should be conical with respect to the rotation about the
r-axis. Further, as we have seen in Section 4.3.2, the
thermodynamic state of a bulk nematic is independent of ¢,
Therefore, in those cases to which Eq.(4.101b) applies, the gtates
differing only in ¢ are thermodynamically equivalent. So,
insofar as thermodynamics is concerned, we can treat Eg.(4.101b)

as a special case of Eq.{4.101la) in which B=0.

In determining the number of the orientational degrees of
freedom for a bounded system, the Frank theory hasg played a
decisive role. Indeed, the regsultant number of “"two" is
just the half of the number of the degrees of freedom of a
bulk nematic,. This in turn shows that two out of the four
orientational degrees of freedom of a bulk nematic should
give way to an interface, when the nematic is put into
contact with another phase. This does not, howvever, mean
that the property of a nematic interface c¢an be fully
characterized by a couple of parameters. Rather, it simply
refers to the effect of an interface on the bulk orienta-
tion of the nematic director. Macroscopic description of
an interface makes sense only when it is properly suppleme-
nted by that of the bulk phase, as illustrated in the
following example: If we base our argument on an elasticity
theory which incorporates the up to, say m-th (m>1), order
derivatives of the director, we can show in the same way as
in the text that the number of the orientational degrees of
freedom of a bulk nematic becomes in general 4m (>4), and
accordingly 2m (>2) degrees of freedom of the bulk are to

be assigned to an interface!
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4.4.2 Definition of the surface excess

Now it is a straightforward task to define the surface excess
gquantity for a nematic ligquid crystal as an extension of the cases
cf ordinary fluids described in Section 4.1. However, special
care must be exercised in the case of a nematic, in that neither
the concentration nor the entropy density is in general uniform
even in the bulk phase, when it is orientationally deformed (see
Section 4.3.2). In stead of Eq.(4.3), therefore, we need here to
define the surface excess of an extensive property X in a slightly

different form:
5 _ - - '
X =X Ka Kh, (4.3")

where X, and X, are, respectively, the hypothetical X's which the
a and b phases would have, when each of the bulk phases were
"extrapolated” up to the dividing surface. This is evidently a
generalization of the original definition, because, if the bulk
phases are uniform, Xa and Xb may be given respectively by Vaxa
and VX thereby reducing Eq.(4.3') to Eqg.{(4.3). The
extrapolation should be done in such a way as to conserve the
state of the bulk phase, specified by the independent

thermodynamic variables, say T, 1) H, and 8. At present, this

jr
procedure simply corresponds to the analvtical continuation of the
bulk director profile, following the Euler-Lagrange eguation.

By using Eq.(4.858) in combination with Egs.(4.94) and (4.95),

we obtain

+ w{ln(R,/R,)1dH + 2wHAI1In(R,/R)] (4.102)
Ry ofo o 8fo
- (e AT + duj)rdr - sz ——— dni(Rz}.
R oT ol aidn, /dr) R
a 3 1 y
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In this expression of the thermodynamic potential, Rz is still an
arbitrary parameter. Hence, the right-hand side of Eq.(4.102)
must be, as a whole, independent of Rz. This property can be
readily confirmed by expressing dni(Rz) in terms of dH, 48, etc.
In view of Eq.(4.101), we can generally write

dn; on, an. on, an
dn;(r) = —ddr + —Lar + —i4ap, + —dan + —Lagp.

(4.103)
In conformity with the previous notation, we shall continue to
use dn,/dr in the sense of {anilar)T,a-,H,B’ as long as
there is no fear of confusion. Substituting the above into the
last term of Eq.(4.102), there arise five terms, the first of
which, involving dRz, is obviously medilnkzzl. Next let us
congider the term containing dH. Based on the ERuler-Lagrange

equation for n;, we can readily show that

d afo aﬂi 2 afo
r _'[r ] = Ir m——
dr 8(dni/dr} oH oH

Thus, by integrating with respect to r, we cohtain

ofo Bni
WR,
S(dni/dr) oH R,

dH = - wlln(R,/R.)14H,
(4.104)

where Rc is the constant of integration which is itself a function

of T, i K, and 8. As we shall see later, the orientational

jr
property of a nematic interface is wholly cast into the function

R..

To proceed further, let us consider a sgpecial surface

located, say, at R across which no orientational work is

ex’
performed as the nematic is distorted at fixed T, uj, and §A.
Though it is not always the case, it may be illustrative to

mention that the above condition is always fulfilled, if the
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director is "rigidly" pinned on the surface at Rex‘ 8¢, in the
same sgpirit as de Gennes {151 introduced the concept of the
extrapolation length, it seems natural to entitle Rex the “point

of extrapolation™ and the surface at Rox the "sgurface of

extrapolation.” As shown in Eqg.{4.958), +the orientational work
done through the surface at Rex when H is changed by dH is given
by
of dn:(R__)
0 = 8Wo = - WRy hd i ex’ gy.
9(dn;/dr) |5  aH
ex
As Rex is a function of H, the above egquation can be rewritten as
of an. BR on.
0 = - wRex —e (e i - S ._AL)
S(dni/dr) R Jr OJH oH |,

ex
which is, on account of Eq.{4.104), further simplified to give

SlnRex
olnH

® - 1“(Rex/Rc)' (4.105)
Therefore, once Rex is given as a function of T, ”j' H, and 8,

we can find RC via Eqg.(4.105), and vice versa. Using Eqg.(4.105),

we can rewrite Eg.(4.104) as

of an, o1lnR
wR, - Pl GH = wlIn(R,/R,) + 2 *X jaH
d(dn,/dr) oH R, J91lnH

(4.106)

Next, the term involving df is immediately obtained in a

gimilar manner as we have done for Eg.(4.104):

WR e o, ap G(T, . H,B)4B
= - (l) r qr r r
¢ 3(an;sdr) 3B g ]
2 (4.107)

where G(T,ﬂj,H,ﬁ) is a function independent of R,. Finally, the
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terms with 4T and duj are evaluated directly from Eqg.{(4.83) to

give
£ n
~ WR, a(aa jd ) g'ri ' ar =
n;/dr
i Ry (4.108)
R2 3t 9t o Bny
' (== dT)rdr -~ sz dT,
p OT dldn;/dr) 9T iy
ex ex

and the eguation in which T is replaced by “j in the above.
Then, the use of Egs.(4.104)-(4.108) in Eg.(4.102) yields

R
ex of OFf an.
dQ = - [§ + uif (——)rdr + WRg, z i 1 4T
R ar B(dnifdr) aT R
a ex
Rex 3fo ofo on .
- [Ny + ( 5 drdr + R, CYEPWETS a*l lduy
Iy n. Ty
R, 3 i 3 "Reg
+ w(PaRadRa - PbRbde) + 4w - ZdellnRa}
nRex
+ w{ln(Refoa) + 2 S1n 1dH - G(T,ﬂj,H,B)dﬁ.
{(4.109)

As required, Eq.(4.109) is independent of R, and serves as the
fundamental equation for the thermodynamic description of a
bounded nematic, which plays the same role as that Eq.{(4.4) does
for ordinary fluids.

Now we can follow much the same procedure as that we taken
from Egq.(4.4) through Eg.{(4.14) to define various surface excess
quantities for the nematic interface. As H and B are both
intensive variables, an integration of Eg.(4.107) with respect to

& at constant T, “j' R Rb’ H, and £ leads to

a’

Q= 7w, (4.110)
which is the same ag Egg.(4.5) and (4.10). Let ug now take the
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dividing surface at R, and rewrite Eq.{(4.109) in terms of

Va = w(Rz-Raz)lz, Vb = w(RbZ-RZ)IZ, and & = w R, to obtain an
equation corresponding to Eg.(4.6) for ordinary fluid systems:
RBX afo Sfo sn‘
dQ = - [8 + ( Jrdr + WR, 2 1 4T

R oT d(dn;/dr) 9T Iy
a ex
Rex afe afo ani
- {Nj + W { Jrdr + wRex ]duj
Ra Suj aidni/dt) auj Rex

- Pav, - P dv, + d(HEln(R/Ra)lw} + 7dA + AZdR

- o1nR _
+ AR™M1n(R, /R) + 2 X144 - AR 1G(T,uj,ﬁ,ﬁ)dﬁ,
SlnH
(4.111)
where use has been made of Pa=P+HRa“2, with P being the pressure
in the nematic reserveir. The interfacial tension 7 is defined

ordinarily by

r=1Q - Q, - Qp1/A

a
= {nw + PV, - HIIn(R/R)Iw + PV, }/A, (4.112)
and &£ by
£ = (P ~-P) ~ r/R - H/R?® = 37/3R. (4.113)

Then, by gubsgstituting Eg.{(4.112) into Eg.(4.111) and making

use of the Gibbs~Duhem equation for bulk phases, we ohtain

R
ar = ~ [8% + R“ljkex -§£?rdr o Rex Ofo 90y ] 4T
R oT R 3(dny/dr) T R
-1 Rex 3fo R 9fo an,
- [Ty +R .f rdr + ~2% 4 1du g

- - - J1nR
+ (P - Py - R™I- HRT2)aR + R™[1n(R ,/R) + 2 o —* 1aH
n

- RﬂlG(Tr i ‘rHrB)dﬁf
J (4.114)
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where S% and Fj are, respectively, the surface entropy and the
adsorption of the Jj~th species per unit area of the dividing
surface taken at R. Ags it stands, thisg is the extension of the
Gibbs equation to interfaces of nematic liquid crystals, and gives
the basis for their thermodynamic treatment. Besides the ordinary
terms found in the original Gibbs eguation {i.e., Eq.(4.143)1, vwe
see several additional contributions coming from the orientational
anisotropy of the nematic. In what follows, we will study the

effects of these factors in detail.

4.4.3 Hard wall-nematic interface

Before going into the detailed discussion of the various
aspects of the genera-
lized Gibbs equation, we

would like to here

nematic
derive the Gibbs equa-
tion when the nematic is T'&
interfaced against a ) ) ) 1 X

planar hard wall {(gsee

Fig.4.11). Here, we i

mean by "hard wall" an hard wall .

athermal substrate which A

serves merely as a cons- |

tant boundary field

acting on the nematic

[25]. Studying  this FTG.4.11. Planar interface between

jdealized case is of a hard wall and a deformed nematic.
The origin of the x-axis is fixed

much realistic impor- with respect to the hard wall.

tance, however, since it

can be expected to well approximate the behavior of the nematic in
a real solid substrate-nematic system, which is in extensive use

for alignment control of nematic samples. Because the planar
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geometry of the interface is presently an auxiliary condition
which must be satisfied regardless of the state of the nematic
rhase, we are to find some characteristic differences in its
thermodynamics, as shown in later sections, in comparigon with the
case of a fluid-nematic interface which isg agsuming & near-planar
geometry under an infinitesimally small orientational deformation,

The Gibbs equation for the hard wall-nematic interface can be
at present most easgily obtained by formally taking the planar
limit of Eg.(4.114), while neglecting the contribution from the
substrate phase. In order to actually perform this procedure, we
have to recall the fact that, as R-»0¢, the variable H is to in

general diverge, because, from its definition, we have
H = R% fo(N,dNn/dr).

Then, upon taking the interface normal pointing toward the wall as

the x-axis as shown in Fig.4.11, we get

1im H/R? = 1im £o(M,dN/dR) = £,(N,dN/dx), (4.115)
R~»00 R~»00
where fd denotes the unapproximated Frank strain energy density

{see Eg.{4.43)]. Furthermore, since
df 4/dx = lim d(H/R%)/dR = lim[-2fo/R] = O,
R=>00 R-»00

fd converges to a constant independent of x as the interface gets
planar; hence, f, can be used as a thermodynamic variable in place
of H. The variable 3, on the other hand, is obviously unaffected
by thisg limiting procedure. Consequently, in view of Eq.(4.107),

we ¢an define a new function GP in such a way that

= i -1
GP(T,Hj,fd,ﬁ) %iﬁmR G(T,uj,H,ﬁ). (4.116)

We shall here denote the positions of the dividing surface

and that of the surface of extrapolation as X and xex'
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respectively. Ugsing Eq.(4.116) and replacing dR and dRex by dax
and dX in Eq.(4.114) vhile making R and R,, go to infinity and

ex
neglecting the contribution from the substrate phasge, we obtain
s (Tex ofy of 4 an,
drx = - [8%+ { =" }dx =+ * 1 4T
% oT S(dni/dx) 9T Koy
xex of afd 8“1
- ETj + { *“§°)dx + ]duj

ex

= (-P+f3dX + (X, - X + 2£d§§£x)dfd - GP(T,nj,fd,ﬁ)dﬁ,

d (4.117)
where the tengion of the hard wall-nematic interface has been
denoted as T*. It is not difficult to confirm that this equation
is identical with that we obtain by starting directly ¥from
Eg.(4.94).

Finally, a word of comment is in order as to the relationship
between the hard wall-nematic interface with which we have
concerned ourselves here and a real solid-nematic interface. It
is crucial at present to notice that most of the solid substances
(like glass) which are in use as a substrate of nematic samples
are in effect perfectly rigid when compared with the curvature
elasticity of the nematic liguid; so that, we can, to a good
approximation, neglect a change of the thermodynamic state of the
s0lid itself which would occur in response to the variation of the
orientational state of the nematic. It must furthermore be
pointed out here that the aligning surface lavers such as
polymeric f£films et¢. may be treated simply as an adsorbed layer
from a thermodynamic point of view.

Based on the assumption of infinitely rigid sclid, we can
generally divide the thermodynamic potential Qt of the whole

system including both solid and nematic phases asg [25],
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+ Q°, (4.118)

where 0 ig the thermodynamic potential of the solid when it

sol
exists alone in vacuum; we assume here the s01id hag a vanisghing
vapor pressure and is also immiscible to the nematic phase. Ang,
as clear from the ahove, 0* takes care of the remainder of Qt
after the individual contribution of the solid is subtracted.
According to the statistical mechanics of the rigid solid-fluigd
interface (see Chapter 5), it is shown that Q" can be identified
with the thermodynamic potential of the nematic¢ phase which is in
egquilibrium under the external field produced by the solid phase.
Consequently, we have toc relate the interface tension 7 in

Eq.(4.117) with Q as follows:

X

Q* = o  +Ar, (4.119)

where Qa is, same as that in Eq.(4.112), the thermodynanmnic
potential o¢of the hypothetical bulk nematic when the dividing
gsurface is taken at X. The interfacial tension defined this way
is usually referred to as the “boundary tension®™ [26-28]; hence,
in order to discriminate it from the interfacial tension in the
usual sense, we dencte the boundary tension as T*» Comparing

Egs.(4.119) and (4.118) with Eq.{(4.112), we can write

*
¥ =1 - (Qgy - Qp)/A. (4.120)

Then, T* and 7 coincide with each other, only when the dividing

surface is taken in such a way that Qb = Qsol'
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4.5 The surface of tension and the surface of extrapolation

As we have seen in Section 4.1.4, the surface of tension can
be regarded asg a specially chosen dividing surface for which
the thermodynamic and the mechanical concepts of interfacial
tension become compatible. In this section, we shall investigate
how the physical meaning of the surface of tengion may be modified
in the case of a nematic interface and how it ig related to the

orientational property of the interface,.

4.5.1 Some elementary properties of the surface of tension

When the (mechanical) interfacial tension is given by 7,
while the elastic strain energy density stored in the nematic 1is
(to lowest order) fo at the peoint of the interface, it has been
shown in Section 4.2 that the radius of curvature of the

(cylindrical) interface Rs can be written as
Rg = Ts/fo, {4.583")

provided the (undeformed) nematic reservoir and the fluid in
contact with the deformable nematic are held at a common

hydrostatic pressure P,

L L

e e+ PR [ [ 2 T i
FIG.4.12. Equilibrium shape of a AR <>
deformed nematic-fluid interface. ;;;;;_a;;“_;;;\;

The interface is planar in the g >

. absence of deformation, but as ‘%

it is orientationally deformed

under a fixed external pressure. deformed undeformed
the interface tends to curve to nematic r-1 nematic

seak a mechanical eguilibrium.
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Noting the relation H = Rszfo, we can nov rewrite Eg.(4.53")
to give

Ry = H/Ts. (4.121)

Equations (4.53) and (4.53') have been derived via a mechanical
argument, hence they are meaningful only when the surface of
tension 1is taken at the dividing surface., It must be noticed in
particular that Eq.(4.121) indicates that H should diverge to
infinity as the interface tends to be planar (RS—HM), in contrast
to the fact that fo goeg to zero. This might at a glance appear
unphysical, in that H is proportional to the deformation energy
density and that the interface be planar when the nematic is
undeformed. Here, howvever, we must recall that, only when
obgerved at a fixed point relative to the cylindrical c¢oordinate,
H can be proportional to the deformation energy; and in
Eq.(4.121), indeed, H should be measured just at the position of
the interface which moves outward as the elastic deformation near
the interface weakens. S50, the fact that H—>o ag £fo,—>0 is
nothing but an indication that the radius of the interface Rs
increases overwhelmingly in comparison with the decrease in fo.
The thermodynamic¢ interfacial tension 7 with respect to an
arbitrary dividing surface at R 18 generally defined by
Eg.{(4.112), Then, by combining Egs.(4.112) and (4.121), while
setting Pb=P as required here, we can now express ¥ in terms of

Tgr Rs' and R:
R
7 = 71y =¥ [1 + In(Ry /R,
R
which is an equation corresponding to Eg.{(4.34) derived for
ordinary fluids. In particular, |{if I(stR)/Rsi<<1, i.e., the

dividing surface is sufficiently near the surface of tension, then

we can expand the logarithm to obtain
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Egz
r= s (4.122)

This result shows that at constant T, M H, and B8, the tension

of a nematic interface does not exhibit ;L extremum as a function
of R, as the interfacial tension of ordinary fluids does. This is
a manifestation of the fact that at constant H and B.
orientational as well as translational work must be performed
across the dividing surface so as to shift its location. As
obvious from the physical meaning of the surface of tension, it
only takes care of the equilibrium with respect to normal stress
at the interface.

Indeed, by regarding the "director at the dividing surface”
as an independent thermodynamic variable in place of H and § [see
Section 4.4.11, it ig easy to show, on account of the definition

of the interfacial tension, that Eg.(4.114) should be written as

s -1 -2 ofo
dy = - 54T - Fjdn. - (TR - HR *)dR - dni(R).
J ddn;/ar) | o
{4.123)
This expression shows clearly that, for fixed T, ., and N(R),

the interfacial tension takes a minimum value at R=R;i in much the
same manner as in ordinary fluids. *

In the generalized Gibbs eguation, there have appeared a
couple of surface orientational functions, Rex and G(T,uj,H,B),
the former of which gives the position of the surface of
extrapolation. Thermodynamically, the latter can be shown to be

connected with the surface of tension as:

O1nR,
a8,

G(T,ﬂj,H,B) = - H (4.124)

which immediately follows from the generalized Gibbs equation by
substituting Eg.{(4.121) at fixed T, Mj, and H with the surface of
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tension adopted as the dividing surface. This may be encugh to
reveal the important role plaved by the surface of tension as to

the orientational properties of nematic interfaces.

4.5.2 Curvature dependence of the interfacial tension

In order to determine Tg as a function of H, let us consider

Eg.(4.114) at constant 7T, “j' and B8 (with Pbe):

- - - J1lnRk
dr = - (r «+ RTIDR™IaR « R7I1nR /R) + 2 X 1aH.
ailnH
(4.125)
Substituting 7rg (=H/Rs) and Rs for r and R in the above, we find

oln7r gin{R__/R_)
B 2 In(Rg,/R.) + 2 —_—tX 8 (4.126)

S1nH B S1nH

Thus, it is seen that when the surface of tension and the surface
of extrapolation coincide with each other (i.e. RszRex), Tg

should always be a constant independent of H and 3:

TS(T,ﬂj'Hyﬁ) = TO{TIII‘:',)I

where 7 - denotes, as before, the interfacial tension when the
interface is planar (in the absence of orientational
deformations).

When Rs#Rex' however, Tg is no longer in general a constant
and 1is to change as the curvature of the interface increases in
response to the orientational deformations in the nematic. To look

more into this point, we rewrite Eg.(4.126) as

Siny 2 o
o hrg | — (4230 __/R1. (4.126')
54 ni’2 gy ex s

Because T ¢ converges t0 7o as H—>w, the right-hand side of the
above equation has to be integrable over O (H( oo, Hence, we see

that, at large H, +the right-hand side must decrease at least
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faster than H“l‘ This Fact then assures that

1n{Rex/Rs} - 0, ag H-s00, (4.127)
So that,

3}i$ Rex/Rs = 1, (4.128)

Based on Eqg.(4.121), we have

Rex ™ H/ 7 o, at large H. (4.129)

Then, by-part integration of Eqg.(4.126') vields

Tg = Teo -;‘:«% expﬁf In(R,, /R )4(1nH) 1. (4.130)
8 (e]
When the deformation is weak, in particular, XEq.{(4.130) can be

approximated as

2
R
Tg = To —R"% expimj (Rge- R )/ 7o dfol, (4.131)
s 0

where we have used H“—Tazlfo ag obtained from Egs.(4.53') and
(4.121), and expanded 1n(Rex/Rs) as (Rex"Rs)/Rs on account of
Eq.(4.128). Finally, in combination with Eqg.{4.123), we obtain

2
R
v o= Te -ﬁ%— expt~f0 (Rgy™ Rg)/ 7o dfol. (4.132)

A. Normal behavior: 1lim (Rex - Rs) { oa
£ o~>0

Equations (4.128) and (4.129} do not necessarily imply that
the separation between Rs and Rex should always remain finite as
the orientational deformation disappear; but, they only demand
that (Rexwﬂs)“l = o(fo). However, as we will see in the next

section, it is possible to show that Rex—R is Jjust the

g
erientational extrapolation length, hence if (Rex'Rs)"N”

according as £fo—2>0, it must be concluded in the Rapini-Papoular's
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gense that the anchoring strength at the interface is infinitely
weak. Based on this observation, we shall call it a ‘“normal
behavior," if R, ,-R; converges to a finite value, and if not, a
"gsingular behavior."

Although Egs.(4.131) and (4.132) are valid for both normal
and singular behaviors alike, they c¢an be reduced to a
particularly simple form in the case of a normal behavior, which
ig readily comparable with the results for ordinary £1luid

interfaces. As in the case of ordinary fluids, let usgs now write

8eo = 1im (R, - Ry). (4.133)

R-»00 8

Then, in view of RS“”To/fo which is valid for small f£.'8, we can
transform Eqg.(4.131), up to first order in fo, as
or Tg ™ Toll + &/R5), (4.134a)

?’3 -~ To(l + foaoo/?'o)- (4.134b)

Note that, apart from the sign of the exponent, Eq.(4.134b) has an
identical form with that derived for an ordinary fluid interface
[see Eqs.(4.35) and (4.39)1. This egquation indicates that Tg
remains virtually constant as long as Rg is large in comparison
with & ,,. As will be shown later, 8.0 gives a measure of the
orientational anchoring strength at the interface: the larger o,
becomes, the weaker the anchoring. Thus, Eq.(4.134b)
additionally shows that the interfacial tension at a nematic
interface is more 1likRely to be affected by the orientational
deformation when the anchoring gets weaker and/or the interfacial
tension smaller.

The wvalue of the interfacial tension when the dividing
surface is taken at Rex can be approximately evaluated from
Eq.(4.132):
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Tex ~ To eXp(~ 85/R.). (4.135)

The surface of extrapolation has been defined as a hypothetical
surface through which the orientational work done by the
environment would vanish when the nematic were extrapolated to it.
3ince a finite orientational work through a dividing surface
implies a change of the interfacial tension, we can redefine the
surface of extrapolation as a dividing surface with which the
orientational work does not contribute to the change of the
interfacial tension. On the other hand, the surface of tension
designates, as clear from its definition, a special dividing
surface where the work associated with the Ericksen stress does
not alter the value of the interfacial tension. As a result, if
both of these surfaces are identical, neither director rotation
nor Erickgsen gstress are to ¢hange the interfacial tension, go¢ that
it remains constant even when the nematic is orientationally
deformed to a varying degree, We have already notlced this point
in connection with Eq.{(4.125).

It 1is generally impossible, however, to simultaneously

eliminate both of the

contributions from 4
A K
director rotation and =
from the Ericksen stress 2y p
& m
only by appropriately
choosing the dividing = %
o &5
surface. Indeed, with ‘%
=

the dividing surface

taken at Rs, the
director rotation will curvature 1/7R,
¢hange the interfacial
tension, and at R,,, the F1G.4.13. Variations of interfacial

Ericksen stregs will do tension with the increase in the

interface curvature.
the same thing. Equa-~
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tions (4.134a) and (4.135) show that they are, roughly speaking,
game in magnitude while opposite in sign as shown in Fig.4.13. At
the present level of approximation, the interfacial tension is
linearly dependent on the position of the dividing surface, hence

we can conclude that by taking the dividing surface at

Ry = (Rg + R 3/2, (4.1386)

the interfacial tension is given by the geometrical mean of those
at Rs and at Rex' which is fixed at 7o up to first order in f. as
a result of cancellation between the rotational and the

translational works acrogs this dividing surface.
4.5.3 Thermodynamic potential

In order to further appreciate the physical significance of
the surface of tension and the surface of extrapolation, it is
also instructive to see how the thermodynamic potential itself
changes under weak orientational deformations. As the
thermodynamic potential 1is independent of the choice o¢f +the
dividing surface, we may locate it at Rs. By using Egs.(4.112)

and (4.134b) along with the assumption of normal behavior, we get
2 = -PV + AS{(Rex - Ra)fo} + As?o, (4.137)

in which Asszs designates the area of the dividing surface.
Since the total deformation energy Fd stored in the hypothetical

bulk region between Rex and Ra with the area A can be written as
Fd'” A(Rex - Ra)fo,

as long as the deformation is weak, Eg.(4.137) shows that the
contribution from the orientational deformation can be treated as

if the nematic were extended up to R, with its bulk properties

X
completely retained. In this resgpect, the term, "surface of

U

extrapolation,”" appears to be a reasonable nomenclature.
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Concerning Eqg.(4.137), however, it must be remembered that
the area of the interface A refers to the surface of tension. If
the area is measured at a different point, thereby resulting in a
numerically different value, it becomes no longer possible to make
guch a simple interpretation of the orientational part of the
thermodynamic potential as denoting the deformation energy for a
hypothetical volume of the nematic.

As mentioned above,

the change of an inter- T T T :
FIG.4.14. Surface of tension
as an effective interface
demarkating deformed "bulk"
nematic from bulk fluid.

facial tensgion is in
general comprisged of

translational and orien-

tational parts, and for 23 nematic
example, the former fluid

disappears when the

o

dividing surface is
taken at Rg. Thug, §Q
= Q+PV¥-A7o, turns out
to be s8o0lely orienta-
tional, if A is taken at the surface of tension. By virtue of
this property, the particular expression of the thermodynamic
potential as given by Eq.(4.137) is consistent with a naive pic-
ture of the system as shown in Fig.4.14, which can be regarded as
an extension of the Rapini-Papoular model [29] to & curved inter-
face; namely, the nematic and the isctropic fluid are geparated by
an infinitely thin membrane which ig sustaining a tension 7o, and
both phases in contact are completely bulklike right up to the
membrane, except that the nematic director is subjected to some
local boundary condition at the membrane. Insofar as we are
concerned with the orientational property of the interface, this
suggeste that it is most natural to regard the surface of tension

as a virtual position of the nematic-fluid interface.
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4.5.4 The surface of extrapolation at a hard wall-nematic

interface

Before cloging this section, we shall list some properties
of the surface of extrapolation at a hard wall-nematic interface
80 as to facilitate comparison with and further elaboration ¢f the
relevant formulas for the nematic-fluid interface,.

Integrating Eq.(4.117) with respect to fd at fixed T, i

jr
B. and X, we readily find
oX
x X - ex
voo=Tr_ ¢t J.xex x + Zfdaf df 4. (4.138)
0 d
In the case of a rigid solid-nematic interface, we can replace
T* by the interfacial tension 7 to give
axex
v = To + J.Xex - X + 2fdaf dfd. {4.139)
O d

Especially, in case Xex remains finite at fdmo {normal behavior),

we can obtain to first order in fd the following egquations:

r To * (Ko - X)Efy (4.140)
and hence

Q

- PV + A{(Xex - xa)fd] + AYo. {(4.141)

Note +that Egs.(4.140) and (4.141) have, respectively, an
identical form with Egs.{(4.134b} and (4.137), provided the
position of the dividing surface X is understocod to be referring
to the surface of tension; the arbitrariness in the choice of X
appearing in the above eguationg is a consequence of the fact
that, when the interface is planar, the concept of the surface of
tension loses its meaning whatever the nature of the interface.
Conversely, it may also be argued that they show that the

thermodynamics of a curved nematic interface can be treated ag if
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it were planar, in a very limited sense though, when the dividing

gurface ig taken at the surface of tension.



4.6 Geometrical properties of the point of extrapolation and the

Connection with the Rapini-Papoular formalism

In this gection, we shall focus our attention on

investigating the relation bhetween the sgsurface-thermodynamic

ex
former section, and the conventional phenomencological parameters

orientational parameters, R and G(T,ﬂj,ﬁ,ﬁ), introduced iﬁ the

appearing in the Rapini-Papoular formalism [29] of the surface-
induced alignment. This enables us to apply the present
thermodynamic theory to existing experimental results, which have
mestly been formulated and analyzed on the bagis of the Rapini-
Papoular type formalism. Although the present consideration is
mainly concerned with the case of a nematic-fluid curved
interface, the argument applies to the sclid-nematic case without

c¢hange, when the planar limit is formally carried out.
4.6.1 Equilibrium director profile as a function of Rex and G

A. General formulas
According to Eq.(4.71b), the equilibrium director profile is

generally written in the form
n = T(@o)hsfﬁ, 81. {4.71b)

where Z=(2H/K3)1/213(r/ro), and T(®s) represents a rotation
matrix acting on the (r,¢,2z) components of the director:
1 0 0
T(ds) = 0 cosdo -sindo (4.142)

¢ sinds cosd o

Becaugse Egq.(4.71k) involves only two arbitrary constants &, and
ro besides H and B, it should be in principle possible to express
them as functions of R, and G.

Let wus denote the director in the absence of deformation as

he {the unit vector along the eagy axis). So that, as the
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deformation weakens near the interface, i.e. Hllen(r/ror~
follztrmro>+0, the director profile has to shrink to the single
point he. Here, we will consider only such profiles that
converge continuously to he ag £fo—>0 with & fixed B; then, we

find from Eg,(4.71h)

1im T(¢odN [L, 81 = TI(0O)INgIO, B] = N . (4.143)
i O

Since the origin of &, is arbitrary, we can assume without 1loss
of generality that

ns[e,ﬁ] = N,. (4.144)

In order that there exists such ns that passes through ne, it is
necessary and sufficient that B be chosen to satisfy the

following inequality [cf. Eq.(4.73)1:
B < g(0,), _ (4.145)

where @e denotes the polar angle of ne. Thisg condition ig not
to deny the existence of egquilibrium profiles with ﬂ)g(eg): but,,
as Eg.(4.143) shows, such trajectories must cease to be a

equilibrium director profile at a sufficiently small, ¥et nonzero

deformation. Conse-
5
guently, the region on
g {(n/2)
the (fo, 8) plane, cor-
responding to equilib- Eall
rium director configura~ Q(QJ
tions, may be expressed allowed
as gomething like the
shaded area depicted in
Fig.4.15. Within the
region in between strength of deformation fo
B=g(n/2) and the e N
- FIG, .15 Reglon of f and B corres-
shaded region, {where ponding to an allowed state of a
Eq.(4.144) does not of bounded nematic.
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course holdl, we cannot find a set of ro and . which is com-

patible with the boundary condition imposed by the nematic

interface.
For ﬁ$g€®e), on which Eq.(4.144) holds, ro and $o can be
easily expressed 1in a closed form as a function of R and G.

ex
Before substituting Eqg.(4.71b) into the definitions of Rox and G,

it 1is helpful to note the following identity. For an arbitrary
variable w which ig a function of H and £, the value of the

partial derivative of N with respect to w at r=r. can be written

ag
n $ n
-.a-..— - a oAn - IQ?—-‘ {:a-——lnro], (4-146)
where
0 4] np
A = 0 -1 and n = ng
1 01, n

Here, use has been made of the fact that Shs/ of=0 at r=r. as
coming from the assumption of Eq.{(4.144). Using this result in
Eqs.{4.106) and (4.107), while in turn substituting H and B for

w, we find

odo d
£ (2HK.8)Y/2 2% aul/2 Toiyl/230(R__/ro)l, (4.147)
and 3% 3
1/2 o
+ (2HK. ) w— = 2H ~(lnre) + G(T, u.,H,RB).
3 3B ) ]

(4.148)
where the positive and negative signs on the left-hand side
corresponds, respectively, to whether the azimuthal angle ¢

increases or decreases with r:

: ofo ofo
= rin 4 ———— -
¢ a(dnz/dr) Z 8(dn¢/dz)

+(2HK 4 p) 172 (4.149)
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An integration of Eg.{(4.147) with the initial condition, $.=0 at
Hzoo (fo=0Q), yields

$o = 3 (2H/K38)1/2 1n(Roy/r0). (4.150)

Then, differentiating this expression by £ and substituting into
Egq.{4.148), we obtain

2]
inro = InR,, - Zﬁé&; InR,, - BG/H. {4.151a)

Use of the thermodynamic relation for G, Eqg.{(4.124), in the above

leads to
_ d 2
Inre = InRex - ﬁ"é"g 1n(Rex /Rs),
) 9 5
= InR,, - 2‘6"5}-3- 1n(Rex/Rs) + Bé"b— inrg,

which, upon application of Eq.{(4.13Q), yields
_ d
inre = 1InR,, *+ ﬁE;E in(Rg, /R,)d(1nH), (4.151b)
o0

Although Eg.(4.15%1a) is a purely geometrical expression,
Eg.(4.151b) is a geo-thermodynamic formula, which depends not only
on the present state of the system but, as it stands, on the
procegs through which the system is brought from the planar

geometry. Now, by combining Egs.(4.150) and (4.151b), we get

. 1729
bo = T (ZHﬁ/K3) aﬁjlmln(Rex/Rs)d(lnH). {4.152)
B. Geometrical significance of Rex: the point of clogest approach

Equation (4.152) show that, under a finite deformation, ¢,
does not in general vanish; so, it cannot necessarily be possible

te find a point on an arbitrary trajectory where the director
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coincide with he. There are however some special cases wherein
such event does occur: (1) when fB=0, and hence when the

deformation is purely polar, (2) when RQX=R and (3) when the

integral is not dependent on B. The fi;;t is obviously a
geometrical requirement of any polar deformation satisfying the
condition that n~»na as £o~0. The second and the third will be
later shown to correspond to the cases of an infinitely strong
and a direction-independent orientational anchorages,
respectively. Anyway, in all of the above listed situations, we
have r°=Rex from Eq.(4.151b) and vice versa, showing that Rex
represents the point of "closest approach™ to Rh,.

In case there exists a point where ﬂ=l’!e holds, it is

intuitively gquite obvious that it should occur at R because Rex

ex”
refers to a hypothetical surface of demarcation acrogs which no

orientational work is done as the nematic isg deformed.

1. General cases
Let hP and I'Ia be, respectively, the unit vectors along the
meridian and the azimuth circle at ne as shown in Fig.4.16.

FIG.4.16, Definition of the polar
and the azimuthal unit vectors.
Under a finite deformation,

the equilibrium trajectory does
not necessarily pass through

the easy axis.
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Then, for sufficiently small ¢, and Cw(ZH/K3)1/21nr/ro,
ni&,L) may be expanded to give

N(L,RB)~ [I + 8T(Po)1IN, + £3IN(0,8)/3L]

o8 (0) . oP(0)
= ne + @osin(")e na + f:[‘-a-;;——— ﬂp + sxn@e—a—g——— ﬂa},
(4.153)
where 1 denotes the unit tensor. According to Eg.(4.74), this

expression is shown to be valid as long as lr-ro! <<KA, with A
being the characteristic length of director deformation.

Further, from Eq.{4.63), we have

80€0)/ 3¢ = 211-8/9(08 1 2/e0 n1/2,

(4.154)

8¢(0)/32 = + 8 %/g00,).

Reflecting the cases in which © and ¢ increase or decrease with
£, there arise four possible trajectories for each £ as shown in
Fig.4.16. Putting Egs.{4.150) and (4.154) into Eg.{(4.153}, we

obtain

nez, By ~

N, +[2H/K,£(0 )11/ 211 -

1/2
e s ] ln(r/ro)np

e

; (2H/K3 )Y 211n(R /10) - In(r/ro)1sin® M.

g(9,)

(4.155)
The separation between the director on an eguilibrium trajectory
and N, is therefore in general seen tc be a quantity of the order
of 501/2, except that

r« = R or B = g(@e),

ex”’

under which the director satisfies R(Rex)=ne + o(follz). The
former 1is Just the condition discussed above in relation to the
case wherein n(Rex)=ne ig rigorously satisfied. On the other

hand, the latter is a condition for specifying a trajectory which
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is tangent to the azimuth passing through ne, namely the
azimuthal deformation. 1In this case, although the director at R,
does not strictly coincide with N, under a finite deformation,
Eq.{4.155) shows that it asymptotically approaches the easy axis
at a relatively faster rate [o(foliz)l than at any other point on
the trajectory.

To be more gquantitative, let us define the element of

distance on the unit sphere by
ds? = £(0)d62 + g(0©)dd2, (4.156)

which reduces the determination of the equilibrium trajectory
between two arbitrary points to the exploration of the trajectory
with the shortest path length on the unit sphere [241]. Based on
this measure of length, it immediately follows from Eg.(4.155)
that the separation between N{r) on an egquilibrium trajectory and

ne is given by

As2/(2H/K3) = [1 - 1[1n(r/ro) 12

g(©,)

g(® )
+ —= [1n(R,,/ro) -
B

in(r/ro)1%.
g(©,)

Hence, it igs now clear that for any B, the trajectory comes
closgsest to he at the point of extrapolation, i.e. r:Rex' This is

of course valid up to the order of folfz.

Z. Summary of result

If the special measure of length as defined in Eq.{4.156) is
emploved, the point of extrapolation acquires a very transparent
geometrical significance as the point where the separation hetween
the director and the easy axis becomes minimum,. Howeveryr, only in

either of the following three cases,

(1L B =0, (2) B = g(8,),
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9

and  (3) — f In(R,, /R )A(1nH) = 0,
o8 oo

(4.157)

the point of <closest
approach bears a guali-
tatively different sta-
tus, asymptotically at
least, which allows its -

interpretation as a

position where the Rex R r

director behaves as if

it were alvays pinned 'FIG.4.17. Geometrical concept of

along the easy axis the point of extrapolation.

regardless of the

strength of orientational deformations. [see Fig.4.171].

4.6.2 Connection with the Rapini-Papoular formalism

A. The model

As a natural and a most general extension of the original
Rapini-Papoular model of a planar nematic interface {29], we would
postulate that the thermodynamic potential Q of a volume
including a curved nematic interface may be expressed as a

functional of the director field N(r) in the following form:

QIN;w,R,,R,,R] = =~ PV + FylN;w,R,,R] + WR7Rp(Ns),

(4.158)
where Fd represents the Frank elastic energy for a bulklike
nematic volume subtending the angle w in between the boundary at
Ra and the nematic interface at R [cf. Eq.(4.55)], and TRp- which
is here regarded as a function of the director at the interface
Ns alone, is the tension of an infinitely thin membrane

demarcating the nematic from the substrate fluid. This expressiocn
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now involves two unknowns, the position of the interface R and the
director field n(r); they are determined in such a way as to
minimize the thermodynamic potential under given boundary
conditions. In this type of model, it is of course required that
the equilibrium director profile, derived this way, and the
resulting thermodynamic potential should correctly reproduce the
actual ones in eguilibrium. This constraint imposes gome
regtrictions on the model and facilitates a bridge with the

egquilibrium thermodynamics.

B. The allowed choice of the interface in the Rapini-Papoular
model
Subjecting Eq.(4.158) to a virtual change in R, we find

6 Q e
0 = gg- = <aR(arr + P} + W7 apr (4.159)
where Ggr is the rr-component of the Ericksen stress. As

mentioned above T rp must be in equilibrium egual to the
thermodynamic interfacial tension relative to the dividing surface
at R. So, KEq.(4.159) is just the Laplace eguation for a curved
nematic interface [see Eqs.(4.40) and (4.42)}. Therefore, (as the
Liaplace eguation is satisfied only at the surface of tension,) in
the present form of the Rapini-Papoular model, only the surface of

tension can be regarded as the "effective” interface of the

nematic:
R = Rs' (4.160a)
As a conseguence, we must also have in eguilibrium
Y rp = T {4.160b>

eq
By adopting the director at the surface of tension hs as an
independent thermodynamic variable in stead of H and fB, it
follows from Eq.(4.160b) that
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T rp eq = TRP(“S) = rs(ns). (4.160¢)

Therefore, T rp should be uniquely determined when the director at
the "interface" is given. As clear from the argument in Section
4.4.1, this 1is a direct consequence of the use of a linear
formalism, the Frank theory, for describing the curvature
elasticity of bulk nematics. Hence, in the Rapini-Papoular
context, there is no room for TP to invelve the spatial
derivatives of the director ag additional independent variables
besides N, as suggested by Dubois-Violette and Parodil30], and
Mada{311}. This fact also precludes the possibility of treating
the "“second order elasticity”™ term, introduced by Nehring and
Saupe [32}, as a purely surface term to supplement the Frank
elastic energy for bulk nematics [23,33,34]. These restrictions
have also been pointed out recently by Barbero, et al.[35], and
O0ldano and Barbero 1[36,37] based on the consideration of the
unigueness of the eguilibrium director profile. Nevertheless, it
should be emphasized that the above result isg not to deny the role
played by such terms, but is only to imply that these
contributions, even if exist, should be expressed in one way or
ancther as a function of RNy for the sake of thermodynamically
consistent treatments. This point will also be discussed in
Chapter 5 from a statistical mechanical view point.

That Egs.{(4.160a~-¢c) are also compatible with the condition of
equilibrium with respect to the director can be readily confirmed
as follows. By applying the variational calculus to Eq.{(4.158)
with regard to NR(r), we obtain the Euler-Lagrange equation for
bulk profile, which is formally independent of interfacial
properties, and the torgue balance eguation at the interface
which reads

dfo

S —— (4.161)
d(an,/ér)

:?IMI + hn

an
Rs R | ns
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wvhere h is the Lagrange multiplier to take care of ini=1,
Subgtituting Eq.(4,160¢) into the right-hand side of the above, we
find

£ or
. oBfe | L 87s ng; (4.162)
dldn,/dr) i ong,

8
which is Just the equation which follows from the generalized
Gibbs equation, when the dividing surface located at Rs fcE.
Eg.(4.12331]. Since the bulk profile is clearly invariant as long
as the director at the boundary is fixed, this result shows that
the Rapini-Papoular model, as envisaged in Eqg.(4.158), can be
congistent with thermodynamics, if and only if the "interface"

appearing in the model is identified with the surface of tension.

C. The anchoring energy and its relationship with the
thermodynamic parameters
Let us now focus on the weak deformation regime in order to

elucidate the connection of Rex with the anchoring strength as

defined in the Rapini-Papoular formalism. As N now resides more
or less near he, we can approximately write
n ~ ne +cpnp +Cana, {(4.163)

where hp and ha are the unit vectors defined in Fig.4.16; and,

Cp and Ca denote the respective components of h,. According to
Rapini and Papoular, we assume that, when the director is
sufficiently near the easy axis, the interfacial tension rRP(no)

may be written as
1 2 ! 2
TRP(no) 2 T o + EEa(P)(Cop) + 5 Ea(&)(Coa) p {(4.164)
where Ea(p) and Ea(a) are the polar and the azimuthal anchoring

energies, respectively.

In egquilibrium, the director at the surface of tension can be
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approximately obtained with the use of Egs.(4.151b) and (4.155) to

give
C.. = —[2H/K.£(0 )11/211 - LRV
sp * 3 e g(8,)
o
X[ln(Rex/Rs) + B?;E ln(Reles)d(lnH)}, {4.165a)
Lo ¢ ]
- 1/2_;
Cga = 1(ZHﬁfK3) 81n@e
8 5 In(R_,/R_)
X{I1 - / f In(R /R )d(1nH) - —SX 8.
g(8,) 3BJ g(0,)
(4.165b)

For opurely pelar [8=01 and azimuthal [B=g(@e)3 deformations,
therefore, Eq.(4.164) yields

(i) Polar:
- 2
7 Rp o Yo + E (p) HIIn(R, /R I“/KSE(O ),
2 (4.166a)
~ To * E_(P)fo(R "Ry /K3f(93),
(ii) Azimuthal:
_ . 2 2
TRP oq Te + Ej(a) sin“8, HIIn(R /R, ) 1%/K3g9(0 ),
(4.166b)

~ 7o + Ey(a) 8in?0, fo(R.,~R)Z/K3g(0 ).
Ag noted in Eq.(4.160¢), Trp has to be, in equilibrium,
egual to Tg+ At small £., it is readily shown from Eg.(4.131)
that Tg can be written as
fo
Tg = To ¥ 2f°(Rex“Rs) - J. {Rexﬂks)dfo. {4.167)
0
Thus, by combining Egs.(4.166a,b) and Eg.(4.167) while taking the
limit o©f £o-0, we a&arrive at an expression for the anchoring
energies:
(i) Polar:
Ea(p)iK3f(@e) = 1i§ 1/(Rex~R

fo->0
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(ii) Azimuthal:
2 - . _
Ea(a) sin @e/KBQ(Ge) = 1im 1/(Rex R

£o—20

g - (4.167b)
As shown in Section 4.6.1, in the case of a single mods
anchorage, Rex gives (at least approximately) a point where the
director would lie along the easy direction, if the bulk profile
were extrapolated. S0 that, Rex"Rs must be regarded és the
extrapolation length in de Gennes' sense. Conseguently, the above
results are seen to be completely consistent with the ordinary
formula relating the extrapclation length to the anchoring energy.
Finally, the physical meaning of the previously made
distinction between the "normal” and "singular" behaviors as
regards lim(Rex*RS} ig now c¢lear. In the former case, which is
characterized by the fact that (Rex'Rs) converges to a finite
value, Egs.(4.167a,b) show that the orientaticnal anchorage is of
finite or infinite strength. In the latter, however, since
(RQX“RS)MNm' we see that the anchoring energy should vanish,
allowing an almost free rotation of the director at the interface.
Except that the symmetry of the system demands, it is obviously a

rather uncommon situation.
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4.7 Generalized Gibbs equation in the near planar regime and the
thermodynamic definition of the anchoring strength

Though it 4is possible to derive wvarious thermodynamic
relations by directly starting from the original form of the
generalized Gibbs eguation, (which 1is wvalid as 1long as the
orientational torque per unit area is much smaller than the
interfacial tension), the results are not necessarily convenient
to figure out the nature of the nematic interface in an
intuitively comprehensible manner. Here, we transform the Gibbs
equation into more specialized forms which hold at small interface
curvatures, s0 ag to facilitate an easy bridge from the results in
the former sections to physically transparent thermodynamic
relations. This also enables us to define the anchoring strength

in a thermodynamically meaningful manner.

4.7.1 Expansion in terms of the curvature
As the interfacial tension becomes large and/or the elastic

deformation weak, the interface tends to assume an alpog; planar

configuration [Fig.4.181]. o s

We shall first derive an o

equation which is wvalid

3“&-

for any degree of

deformation as long as
the curvature of the
interface is sufficiently

small.

Thig is technically

& recurrence of the case

of a hard wall-nematic

interface, in which we e e
FIG.4.18. Relationship among the interface
curvature R"l, the interfacial tension Ygr
the relation and the Frank elastic energy density f.

started the argument with
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H = rzfo.
As H is spatially constant, we see from the above that
0 = dfs/dr + 2f,/r,

s0 that we find that f. should also be spatially invariant up ¢to
first order in the curvature of the interface R }.
Putting H:szc into Eqg.(4.114) and retaining only the terms

of lowest order in R'l, we obtain

R
ex of £ n;{(R_._)
ar = - [8% 4 Jn O gr v Ot 90 Rex. 14T
R OT d(dn;/dr) I 9T
ex
R
ex of £ on.(R__)
- Efj + j. S dr + o i BX ldp g
R anj S(dni/dr) Ry 8}13-

oR
+ 2d[fo(Ry, - R} + (R - R, Ddfo - {GP(T,uj,fo,ﬁ>+2fozﬁfﬁildﬁ.

{(4.168)
where “{Rex) implies that the director at the point of

extrapolation should always be taken during differentiation.

Furthermore, it follows from Eq.{(4.124) that Gp thermodynamically
satisfies
SR
G (T, #:,f0,B) = - fo —P (4.169)
P | 38 .

It must finally be remembered that the higher order correction to
the above is of the order of OE(Rex«R)/R]dfollz.
If we wish to focus on a particular mode of anchorage, we

need to regard the variable B as a function of T and u for

j;
example, in order to exclusively deal with the azimuthal
anchorage, we have to set B=g(®e). In this case, Eg.{4.174) can

be rewritten in a bit simpler form, which reads
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R
x Of o9f on.(R__, B)
ar = - [s® +.[ 9o . O S 1aT
. or dtany/ar) Iy a1
R
-1y +'[ ox 9o 4, 9 on; Rex: ) 1dn 4
R O, dtan/ar) g 3y
+ 2d[fo(Rgy -~ RI1 + (R ~ R y)dfo. (4.170)

Finally, it is of interest to note that, when R=R,, Eqs.(4.168)
and (4.170) are reduced to essentially the same form as those for
a hard wall-nematic interface [¢f. Eg.(4.117)]. Although, in the
latter remains an additional term, ~fodX, which comes from the
athermal nature of the hard wall, this contribution vanishes when
the dividing surface is located at a point fixed relative to the
hard wall.

4.7.2 Expansion in terms of the elastic energy: Formulation based

on the stregs~-gstrain relationghip

For vwveak deformations, Eg.(4.151b) can be approximated to
give

2]
o =~ Rgy = ﬁ'gB(Rex - RgJ.

Then, substituting the above into Eg.(4.155), we can write the
polar and the azimuthal angles of the director at Rex as

B o
O . = 0, - [2F0/K.£(0 )11/211 o e 11/2 g2 (R - R.),
ex e + g e g(@e) Y ax 8
& _ = &+ [2B€o/Ka11/2[1 - ]§_{R - R.)
ex e - of iy .

(@ ) aﬁ ex 8
37 (4.171)

follz, and clearly, when

These are correct up to the order of
8=0, B=g(®e), or J(R,~Rg)/ 9B=0, we have N(R,,J)=N_.
Next, wutilizing the expression of the Frank elastic energy
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density in terms of polar and azimuthal angles, i.e.,

1 30\ 2 ad\2
fo = - K3{f(e}(---) + g(@)(m) 1,
2 dr dr

we generally find

3
—1in{K,g(8)]1}.
a3

of B o
(......_°) = folll - ——] —1n[K4£(0)] +
) oT
(4.172)

Similar eguations are obtainable for chemical potentials also. In
relation to the above, it ghould be pointed ocut that, when the
Frank elastic constants are assumed to be proportional to each
other,

Klocxz OCK3, {(4.173)

Eq.(4.172) can be very simplified to

of o o
(»~«-») = fo —— 1nK,, (4.172")
ot /o ° ot

as we have already noted as regards the thermodynamics of bulk
nematics [cf. Eq.(4.91)1]. Equation (4.173) is a much weaker
constraint than the so-called "one-constant approximation,” and
we shall hereafter refer to it as the '"scaling constant
approximation."

As a final preparation, we derive an expression for the
curvature stress L. According to the elasticity theory, the
curvature stress components, L and La' along the polar and

P
azimuthal directions are resgpectively defined by

L ofo 4 r afo
= w» q g S———— an I T 3 Tttt — ,
p Pl 3(an,/ar) a 3l 9(dn, /dr)

which are, in terms of spherical polar coordinate, rewritten as

40 ] d¢
Lp = - K3f(@}*g:, and La = - K3g{9)/’szn(—)-g;

(4.174a)
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These represent the orientational torgue per unit area transmitted
along the interface normal (r-axis). Because ¢of the presence of
the torgue which is laterally transmitted through the boundary
surface parallel to the r-axis, the over all balance of the torque
does not necessarily reguire L to be spatially constant throughout
the nematic, However, since this lateral contribution is of the
order of fo, Lp and L, can be regarded to be a constant of
deformation as far as terms on the order of follz are concerned.
In terms of £, and B, L. and La can be readily written, up to an

P
appropriate order, as

= 172 1/2
Lp = 3 EZfoKaf(Ge)I {1 - Bfg(Ge)} .
(4.174b)
L, = 3 [280K3811/2/8in0 .
Likewise, the curvature gtrain, which is defined by

l\—ne=cpnP+cana, can be expressed on account of Egs.(4.155) and
(4.174b) as

9
Cp = [Lp/K3E(@ ) IRgy = R + B0 (Ree = RYI1,
5 (4.175)
. 2 - - -2 -
Cy = [La/K38(0) 18120 (Ryy = R + [6-9(8)1— (Ryy = Ry}

Combining Egqs.(4.171)-(4.174) with Eg.(4.170), we get

- . o8 -
dr = 5%ar Fjdnj + Lpd@ex + Lad<I>ex

- folRgy - RII1 - 1{a[1nK4£(0 )1 -

lnf(@e)d@e}

g(®,) .
~ folR - R) {d{InK,g(©® )1 =~ ing(© )40}
e ex g(ge) 39 & a@e g € -3
+ Zd{fo(Rex - R} + (Rs - Rex)dfo. (4.176a)

Furthermore, this equation adopts an extremely simple form in the
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case of a single mode anchorage as follows:
(1) Polar [ f8=01,

. _ w«S -
dy = i Fjdﬂ§-+bpd®e

o
- fo(Rex - R)(diansf(ee)l - {*gé 1nf(®e)]d@e}
e

+ 2d[fo(Ryy - R)1 + (Rg - R,y )dfo, (4.176b)

{2) Azimuthal {B:g(Ge)I,

= - 48 -
dr = 8%4T Fjdnj'*badée

- fo(Rg, - R){A[1NK39(0 )] - I 1ng(@ ) 1d@ )

e
+ 2d{f°(Rex - R)I + (R8 - Rex)df°‘ {(4.176c)
Finally, when the dividing surface is located at Rs' these

equations c¢an be expressed in a compact form in terms of the

curvature stress and strain as follows:

- _ af -
dr g = gS¥arT Fjdgj + Lpdee + Ladée + Lpdcsp * Ladcsa
B a B P2
- fo(Rex—Rs){{l— } = lnf(@e) + e 1ng(@e)}d@e,
g(@e a@e g(@e} a@e
- Lacsacot(-)ed@e (4.177)

which is, as it should be, identical with what follows directly
from Eq.¢4.123).

4.7.3 Thermcedynamic definition of the anchoring gtrength:

The extrapolation length and the anchoring energy

The Rapini-Papoular's definition of the anchoring strength is

thermodynamically gquite unsatisfactory. First, their definition is
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based on a semi-microscopic concept of the "director at the
interface," which, as already noted, needs further specification
from a thermodynamic point of view. Next, another serious
shortcoming is the fact that the functional form for the
interfacial tension was chosen on a rather ad hoc basis without
regard to its thermodynamic foundation; accordingly, the
phenomenclogical meaning of the anchoring energies were left
ambiguous, thereby having made them useful only for 1limited
descriptive purposes. We shall here offer a thermodynanmic
definition of the anchoring strength.

In Section 4.6, we have seen that, for both £=0 and
3mg(®e), the limiting distance between the surface of

-Rs) can be

extrapolation and the surface of tengion deo=1im(Rex
£o—>0

identified, insofar as it exists, with the extrapolation length in
Rapini-Papoular's sense. In addition, we have seen in Section 4.6
that, when Rex—Rs:O, the equilibrium director profile passes
through he at Rengs’
interfacial tension remaing at the value of the undeformed state

and in this case furthermore, the

even when the nematic is deformed. These are all the correct
properties that an infinitely strong anchoring must have, which
are familiar in the Rapini-Papoular context. Based on these
properties, it appears natural to generally define the

Ythermodynamic extrapolation length" via

dg = Rye = Ry (4.178a)

Nete that this definition is not restricted to an infinitesimall
deformation, but remains meaningful however strongly the nematic
is deformed. In the case of a hard wall-nematic interface, this

may be replaced by
d, = X - X. (4.178b)

It is also illuminating to recall the fact that at the point of
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extrapolation, the director approaches closest to the easy axis,
when the director configuration in the bulk nematic is
extrapolated, This &lso shows that the definition of the
extrapolation as given above can be regarded as a generalization
of de Gennes' concept of the extrapolation length.

From Eq.(4.168) or (4.170), we readily obtain

or o
(-—-—ﬂ) = Rgy = Ry + 20— (R ~R]). (4.179a)
ofo /p ne, B dof o
rd 3’

In particular, we find from thisg equation that the limiting value

of the extrapolation length de is given by

or
SLim (gfwﬂ = dgo- (4.179b)
o™ o
TI tujrﬁ
In c¢ontrast to Rapini-Papoular's definition, these formulas

express the anchoring strength in the form of a susceptibility of
the interfacial tension to the Frank elastic energy density in the
bulk nematic, both of which are well-defined regardliess of
whatever inhomogeneity existg within the interfacial transition
region. As a result, if the interfacial tension is measured as a
function of the orientational deformation, the extrapolation
length can be calculated via the above equations. This point has
an important consequence for statistical mechanical treatments of
the orientational anchoring strength [see Chapter 5]. Since it
does not matter much in most cages which of 4, or 4,0 is actually
employed, we ghall hereafter express both of them simply by de;
when there is a need of distinction, we write the former as de{fo)
by explicitly showing its function dependence on f,.

Next, 1let us define the anchoring energy, in a slightly
generalized form than Rapini-Papoular's, and investigate how it is
related to the extrapolation length. Recall the fact that, as an

independent orientational variahle, we can take the egquilibrium
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director at an arbitrary point instead of (H,f) or (£fo,87}.
Therefore, it follows in particular that Ty can be written as a
function of the director ns at the surface of tension. By

focugsing on the weak deformation regime, we can write

Tg = Tg(Cgp.Cga) (4.180)

where csp and csa are, respectively, the polar and the azimuthal
components of N, with respect to the local rectangular coordinate
taken at N [¢f. Eg.(4.163)); see also Eqgs.{4.165a,b) and
Fig.4.16. It should be emphasized that although Eq.(4.180) is
formally similar to the Rapini-Papoular interfacial £free-energy
functional, they are radically different from each other in that
the former is strictly an equilibrium gquantity expressed as a

function of the thermodynamic variables Csp and Csa’

1h-%

Cfc
(a'zimuthal)

FIG.4.19. Interfacial tension
ag a function of strain.

Csp (polar)

At Cspzcsazo, which corresponds to a planar interface, Yrg 18

equal to Yo, and, as Csp and Csa move away from the origin, 7

8
will increase or decrease depending on the sign of the
extrapolation length, Requs. In Fig.4.19, Tg is schematically

illustrated over the CSP"Csa rlane.
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In the Rapini-Papoular formalism, the anchoring energy is
introduced as a coefficient denoting the rate of increase of the
interfacial tension when the director at the interface undergoes a
deviation from the easy axis. Let us consider the change of Tg
for each mode of anchorage specified by 8. At constant 8, Csp
and Cg, move on a straight line in sufficient vicinity of the
origin, and now we would like to introduce a measure of the
separation between the interface director ns and the easy axis
via

[£00C, 2 + g(8 ), %/sin?0 1172

C. = € 22 , (4.181a)
I (£(@ ):1 B/g(8 )] + Bf31n2® }1/2

which is rewritten, by uging Eqe.(4.174bk) and (4.175), as

. (2£0/K3)1 /248 2 + prg(o)-B1C B,/ 3prH /2
r (E£(8)[1-8/g(6 )] + Symmry ot 172

P

(4.181b)

Cbvicusly from the former equation, crzcsp and C=C_.. for purely
polar and azimuthal deformations, respectively. Furthermore, it
should be noted that Cr is, except for the denominator, identical
with the measure of length on the unit sphere used in the last
gaction, which has allowed the interpretation of Rex as the point
of closest approach to he.

For each B, we define the anchoring energy Ea by the
curvature (with respect to C,.) at the origin of the curve of

intersection between TS(C ) and the perpendicular plane

sp'
containing the straight line as noted above:
9%
E, =(a*—~§) at C,=0, (4.182)

2
acr TI#le’

This definition yields the Rapini-Papoular anchoring energies
Ea(p) and Ea(a) for pure polar and azimuthal anchorages [see
Eq.(4.167)1. For an arbitrary mode of anchorage, straightforward

calculations show that
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L. Ky _£(011-B/g(0 )] + B/sinte

2
a dg 1+ Blg(®)-BII31In(4a,)/ 3B ]

(4.183)

Because the second factor is always positive, Ea has the same sign
as that of the extrapolation length. However, it is in general
only in the cases of purely polar or azimuthal deformations that
the formula, Ea°°1/de' is obtained, as is familiar in the Rapini-
Papoular formalism. This is not an artifact resulting from the
present choice of Cr‘ To illustrate this point, let us consider
the casge in which de ig finite, but adef8=mh Equation (4.183)

now indicates tha£ Eano, i.e., a vanishing anchoring strength.
And, in accordance with this result, Egs.(4.175) and (4.179) show
that, for finite Cs and C

P sa’
This is Just the property reminiscent of the zero anchoring

we must have f£.,=0 and hence Tg=To-

strength. Therefore, the thermodynamic definition of the
anchoring energy as given above is dependent not only on the
extrapolation length de for the particular mode of anchorage in
question, but also on how d, behaves for neighboring modes.
However, when de is independent of 3, Ea can be written in a very
gsimple form,

8 1 8 1

E, = 1/1 £ (1- ) 1 (4.184)
g(8,) E,(a) 9(0,) E,(p)

which shows that the anchoring energy for a mode of [ is given by
a weighted harmonic mean of the anchoring energies for the polar
and the azimuthal anchoring energies.

As appreciable from the above discussions, the extrapolation
length is a more fundamental concept in thermodynamics than the
anchoring energy; the anchoring energy comes afterward via some
additional definition (Rapini-Papoular formula is a kind of this).
And, even more significantly, the extrapolation length, though it

might be understood to be meaningful £for only infinitesgsimal
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deformations, can be naturally generalized to finite deformation

regime in a thermodynamically consistent manner by defining it as

One of the remarkable features of Eq.(4.183) is that the S-
dependence of Ea can in principle be gquite complicated, showing a
sharp contrast with the simple dependence assumed in the Rapini-
Papoular formalism. Put differently, this is an indication that
thermodynamics tells nothing on how the anchoring strength should
be influenced by the mode of deformation to couple. This 1is
indeed & task ¢of microscopic theories. From the siress-strain
formulation of the thermodynamics, i.e., Egs.(4.123) and (4.177},

we have at fixed temperature and chemical potentials
drs = Lpdcsp + Ladcsa'

Consequently, the Rapini~Papoular form of the interfacial tension
as in Eg.(4.164) amounts to assume (arbitrarily) a linear

relationship as

Lp = Ea(p)Csp, and La = Ea(a)csa'
4.7.4 Thermodynamic inequalities for the stability of macroscopic
alignment: Finitenesgsg 0f the anchoring strength

Let us finally give a formal proof for an intuitively obvious
fact that the anchoring strength is thermodynamically related +to
the stability of the macroscopic alignment. Here, we suppose that
the system in question (including the interface) ig immersed in a
huge environment comprised of the deformed nematic within the
boundary located at Ra [see Fig.4.51]; Rb~Ra<<Ra.

As well known, the condition of thermodynamic equilibrium can
be stated in the form that the minimum work needed to bring the
system from the eguilibrium to any neighboring state should be

positive [38]. Let Qen be the grand thermodynamic potential of

v
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the environment. For a process taking place at fixed temperature,

volume, and chemical potentials, the minimum work swmin is

required when the process is revergible; so that, it follows that

BW o iq = 8Q + 8Q . (4.185)

Furthermore, on the assumption that the environment itself 1is
always in thermodynamic and mechanical equilibrium, the condition
of the equilibrium of the system reduces to
ofo
SWpin = 8Q + WRy——— 8n;(Ry) > 0. (4.186)
dldn;/dr) g
a
Expanding & in powers of Sni(Ra) by regarding @ as a
function of ni(Ra), we £find up to second order
90 a%0
§Q = ~— &n; + ————§&n;&ny. (4.187)
on; ony Iny
Upon substitution of the above into Eq.{(4.184), the first term
cancels out when combined with the second in Eg.(4.184), and we

are left with

o dfo
- [ 381‘!18:‘!.3’ > 0, (4.188)
Sni S(an/dr)
where wusgse has been made of Egs.(4.94) and (4.95). Note that the
gquantity in the sguare brackets is symmetrical c¢oncerning the
exchange of ny and “ﬁ' The above inequality should be satisfied

for any infinitesimal rotations of the director, obeying Ini=1.

For small deformations, Eq.(4.186) can be transformed to

EEP(acp)2-+[f§W + §E§]SCp8Ca +A§£9(8ca)2 > 0,
P a P a (4.189)
where Cp and Ca are the polar and the azimuthal components of
n—he at Ra' In order that this inequality heolds for any SCP

and Sca, the following two conditions should be satisfied:
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L%’

> 0, (4.190)
and L. BL 5L. BL
—F LBy LR S8 (4.191)
ac, acC, aC, p*

Iin terms of the Jacobian, the latter can be further written as
a(Lg'La) 'y
a(cp,ca)

So that, we find

9Ly, L)/ 3Ly, Cy) ALy A,

> 0,

P
which, in combination with Egq.(4.188), yields
OLa
oC
a LP

> 0. (4.192)

Egquations (4.188) and (4.190) are the thermodynamic inegualities
characterizing the stable and metastable orientational states of a
surface~aligned nematic under curvature stress. Qualitatively,
they indicate that, as the director is rotated from the easy axis,
the restoring forceAshouI& monotonically increase.

The inequalities derived above can be translated to a
condition for the extrapolation length by changing the independent
variables from C? and Ca to fo and §. As clear in Egs.{4.174b)
and (4.175%), the curvature strain and stress are proportional to
f01/2 under weak deformations; so that, by temporally defining the
functions of B, x(B), v{(8), X(B) and Y(B) wvia Lp=;f01/2x(ﬁ),
Laz;follzy(ﬁ), Cp=-fo1/2K(ﬁ), and Ca=-folle{B), we can rewrite
Ege.(4.188) and (4.190) as follows:

DLy Cy) | By C)/ ke, ) &Y' - x'Y
8(C,.C,)  B(C,,Cu0/ dlfe, B)  KY' - X'Y

(4.193)
and
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3(L3’L§) . 8(L§,Lp)/8(fo,ﬁ) ) yx' - ¥y'x s o

3(C,,Ly) d(Cy L)/ Blfe, BY  ¥x' - Y'x

The, substituting %, y, X, and Y as obtained from Eqs.(4.174bh) and
(4.175), we find after some strajightforward calculations that if

1d_1«¢ oo lé d_1< oo and 182 d_1¢ oo
e ’ apn e 4 anl Ce
aB o8B

(4.194)
are simultaneously satisfied, there exists a critical thickness
d=d, for each B, beyond which the thermodynamic inequalities
hold. The appearance of the critical thickness is obviously
related to the inhomogeneous nature of the system under
consideration; so, it is natural to expect that dc is the guantity
of the same order of magnitude with the physical thickness of the
interfacial layer. The first two inequalities of Eq.(4.194) is,
as observed from Eq.(4.183), equivalent to require that iEai {oo,
S8c that, they are seen to be connected with the stability of the
director configuration with respect to the director rotation which
conserves (. The final one is thus related to the stability for
the change of mode at fixed elastic energy.

When, in particular, the deformation is restricted to be of

single mode, the condition of local stability reduces to

ldel { o0, (4.195)

which also implies a non-zerc anchoring strength. When the
equality holds in the above, the alignment becomes unstable. This
cage may correspond to an "orientational critical point" where the
alignment undergoes some kind of phase transition. We will

discuss this point in more detail in Section 4.9.
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4.8 Thermodynamic relations

By applying Maxwell's relation to the generalized Gibbs
equation, Eqs.(4.170), (4.186a), or (4.177), it is now a
straightforwvard matter, for any mode of anchorage, toe derive
formal thermodynamic relations which hold among interfacial
quantities. However, unless the anchorage is polar, azimuthal, or
isotropic, this procedure yields in general a very complicated
expression involving the f(-derivative of the extrapolation length
de. Though this may well be of theoretical interest, there is at
present available no experimental information on how a nematic
interface does behave, when subijected to such & mixed-mode
curvature deformation. S0, we s8hall here limit the argument to
the cases of simple anchorages, whenever it becomes otherwise too

lengthy.

4.8.1 Adsorption at a deformed nematic-fluid interface

A. Adsorption as a function of orientational deformation

As already noted in relation to the case 0of ordinary f£finids
in two-phase egquilibria, the temperature and the chemical
potentials can not be in general changed independently of each
other. From the Gibbs~Duhem equations for the bulk {(isotropic)
fluid and the nematic reservoir mutually in equilibrium under a

common pressure P [c¢f. BEq.{(4.12)], we get
0 = AsdT + Ap du, + Apydug, + ..., (4.196)

where As and A;)j are, respectively, the phase-to-phase
differences of the entropy density and of the molecular number
density of the J-th species. For a process taking place at
constant temperature, substituting dﬁl from Eg.(4.1%6) into
Eq.(4.170) vields
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R R
ex of Ap. ex of
dy = - zrj + j. Z ar - —-—3(F1 + J. d dr)]dﬁj

R 94y L R 9Ky
) 9o ony(Rey, B)  Aby 9ny(Rgy, B) "
S(Gni/dr) Rexaﬂj &Ql 3111
+ 2d[£o(R,, - R)] + (R - Ry, )dfo,
(4.197)

where the summation over 3 runs over all components but the first.
As we have done for ordinary fluids [Section 4.1.3], it is easy to
show, on account of the expression for bulk densities [Eq.(4.80)1,
that the quantity in the first square brackets is independent of
the position of the dividing surface R,

Next by applying Maxwell's relation to ”j and £ in the

above and integrating by fo at fixed T and o (m#£1l), we obtain

ipip. Rex Bfo e - ofo on; (Rgy, B)
i T 3
JRr Ol 3(dn;/ar) Rexa“f’
FEo 5
+ —— (Rgy = Rg) dfo, (322).
J 0 8113
(4.198)

In this expression, U, is regarded as a function of T and x, (m
2), and 1Fj stands for the adsorption of the 4J-th component
relative to the first, i.e., 1Fj=Fj-(£§,pj/Apl)1"1; the
subscript 0 denotes the guantity at £fo.=0. It should be noted that,
in an orientationally deformed nematic, 1Fj is noe longer a
constant independent of the location of the dividing surface as in
ordinary liquids. The above egquation also applies to the case of
a hard wall-nematic¢ interface, provided the variables are reread
appropriately.

For weak single-mode deformationsg with the dividing surface
taken at R;, we obtain from Eq.{4.176b):
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(i) Polar anchorage (f8=0),

d o ab
I s = Moy + L Ly + L2 —8—r — 1nf(o )1-—°
8J 4 PP 2K.£(0,) 39O ou
g d
+ Lpz & + o(fos),
an 2K3£(®e) {4.199a)
where Lp is, as before, the torgque transmitted per unit area
across the interface as given by Lpz;E2f°K3f{®&)]1/2. For the

azimuthal anchorage, on the other hand, we obtain from Eq.(4.176c)

a slightly different expression:

(ii) Azimuthal anchorage [B=g(8 )1,

a¢ d o 96
1st B 1r°j * g Yol Laz > 1“9(®e)“““e
auj 2K,9(0,) 36 Sﬁﬂ
3 d
+ L2 ¢ + olfo),
iy 2K39(8,) (4.199b)
where La=;[2foK3g(®e)]1/2. In particular, when the scaling

congtant approximation (KIszuKB) holds, Egs.{(4.19%a,b) reduce to
(i)

1 1 99, 2 1 d dg
gy = "Toyg + Iy o bp .
aﬂj 2f(®e) auj K3
{4.200a)
and (ii)
1st - lroj . ff2e4, az 1 o de ,
dU 29(0 ) duy K,
(4.200b)
respectively. Here, it must be noticed that Eq.{(4.200a) is

completely identical with Eq.(4.198) restricted to polar anchorage
owing to the fact that n{Rex,B=0)=he and 8f¢/8u3=
foaan3/3uj. Obviously, this is not necessarily the case for
an azimuthal anchorage. In terms of the strain components at the

gsurface of tension Cs and csa given by EKEqg.{4.178), the above

p
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equations c¢an be transformed, under sufficiently weak deforma-
tionsg, to give
(i)

) y K3£(8,) 90, , £(8.) 3 Ky
st Foj + CSF p 5 CSP " 5 P .
e “j “j e
(4.200¢)
and (ii)
K.g(®_) g9 g(®_) 3 X
lrsﬁ = 1F°j * Cga 2 < ©- Csaz 2 -2
de L 2 Juy dg
(4.2004)

The above results indicate that the adsorption at a deformed
nematic-£fluid interface is affected by the orientational
deformation of the nematic in two ways: (1) the change of the
pretilt angle induced by composition (or pressgure) variation, and
{2} that of the anchoring strength. In particular, it is worth
pointing out that the effect of the anchoring strength is
guadratic in the curvature stregs (and strainj, so that it is
uniquely determined only by the absolute strength of the
deformation, in whatever direction the director is distorted. As
to the contribution from the pretilt angle, however, the
adsorption may increase or decrease depending on the sign of the
curvature stress. Specifically, when the nematic‘is deformed in
such a way as to enhance {(oppose) the effect of the addition of
the j-th component, the adsorption will be increased (decreased)
as the nematic is more and more deformed. This is in accord with
Le Chatelier's law.

To make an order-of-magnitude estimate, let us assume that
the Jj-th component is a trace impurity with the mole f£raction cj;
80 that we can use the ideal solution formula. For simplicity,
furthermore, we adopt the scaling constant approximation. Then,

in the case of a polar anchorage, Eq.(4.200a) is rewritten as

L.c. o© L 2., a d
1st = Ip_ . + 2RI & + R £, (4.201)
J kKT Scj 2KTE(O ) ecj K4
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where Kk 18 the Boltzmann constant. In Fig.4.20 shown is an
example of the change of the adsorption with Lp; wherein, we have
assumed
o0 C. o d
ey €. = -10, and d 2 109 mé/3.
acj Zf(@e) Scj K3

Since no systematic measuremeni has ever been made on the changes

of the pretilt angle and, especially, of the anchoring strength

associated with  the PSRN
adsorption | * ,
addition of an impurity, {m*“)
8
these values were 2xi07E w-anchoring
strength
adopted rather arbitra- {reduced)

rily here, with the P

situation as shown in
curvature stress

Fig.4.21 in mind. L b D . e
42 0N 2 aneT 2

Although this choice of ; Dy (J/m

parameters corresponds S -1k ‘\

to the case wherein the f X pretitt

pretilt angle and the ; ol |

anchoring strength ~ lenhongedy |

e FIG.4.20. Variation of the adsorption .. .
with the application of a curvature

ly over a rather narrow stress.

should change drastical-~

range of impurity con-

centration, those values g ' i §
may not be so unrealis- a2 =
tic in view of the fact © T 105 ¢
that the alignment of f E
nematics is often forced & S 8
to change from planar to % ol 10 é
homeotropic by a frac- e 3
tional wvariation in the Y E 2 3 4

concentration fog C
amount of adsorbed

FIG.4.21. Conceived variation of th

surface-active agent on pretilt angle and the extrapolation
length associated with the change of
the impurity concentration.

4 - 100



a solid substrate [39].

Figure 4.20 reveals that at an LP as large as 10“4 J/mz,
almost sub-monolayer adsorption {(or desorption) of the impurity is
induced. If we denote the characteristic length of the elastic
deformation as A, Lp is approximately given by Kaf(ae)/k.
Then, assuming K3f(®e}=10"11 N, we obtain A=0.1 um for mexo“
4 J/mz. This is a level of deformation which is often achieved
under an electric field in practical liquid crystal cells. It
should, however, be pointed out that at thig rather strong

deformation, the strain Cs assumes a value as large as 1 at the

P
nematic interface in gquestion having déwo.lﬁm.

B. Gibbs adsorption isotherm

Suppose a process associated with the change o¢f chemical
potentials oc¢curring at constant T and £o. By substituting
Eq.(4.198) into Eq.{(4.197), we obtain the Gibbs adsorption

isotherm for a nematic interface:

fo
.1 L .9 _ ° _ r -
drs = [ Foj 28&#-(Rex Rs) + Jﬂ 8#-(Rex Rs)dfolduj,
3 0 3 (4.202a)
where, as before, Jj is restricted to 2 and over, and Hy and 8
are considered to be functions of the rest of the chemical
potentials. This egquation is valid for any mode of anchorage, and
agrees with what we obtain by directly differentiating Eq.(4.167).
In the case ¢f a normal behavior, Eqg.(4.202a) reduces, up to first
order in fo, to
dr, = - [T °
Tg = o5 EQE;; deidnj. {4.202b)
3
In contrast to the adsorption itself, the above eguations lack the

(direct) contribution from the pretilt angle, but contains only
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the part of the anchoring strength.

When the orientational strain Anszns—ne is fFixed, instead
of £fo, while the chemical potentials are changed, we find from
Fq.(4.123)

of on_ .
dy g = RS A e £

—————- lap., (4.203a)
8

which can be, upon application of Egs.{(4.199a,b), transformed to

_ .1 9
= [ Toj + fo de]dﬂj’ (4.203b)

a7
aﬂj

5
provided the anchorage is purely polar or azimuthal. Equations
£4.202b) and (4.203b) show that, depending on which ¢f £. and
Al\s is fixed, the orientational deformation contributes to the
interfacial tension in an opposite direction. Intuitively
speaking, fo may be almost constant when the boundary opposite to
the interface, which is inducing the orientational deformation, is
located sufficiently far from the interface in comparison with the
extrapolation length; and on the other hand, Ar!s is expected to
stay almost fixed when the counter boundary is very close to the
interface. As a result, they may well be viewed as representing
the +two extreme boundary conditions. The actual experimental
situations lie somewhere in between, depending on the details of
how the deformation is brought about.

To illustrate the numerical consequences of those formulas,
let wus investigate the case of a three-component fluid which is
comprised of a couple cof mutdally immiscible fluids, the
components "1" and "2," dissolved with a small amount of surface
active agent, the component "3." We regard here that the phase
congisting of the first component is in the nematic state, and the
phagse with the second component is serving as a substrate for it.

And, to make the point clear, we further assume that the added
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surface active agent is not miscible to the substrate, either.
Because of the immigcibility, the chemical potential of the

substrate phase, iy, is not influenced, at constant temperature

and pressure, by an application of the third component. For the
nematic rhase, we have, from the ideal sclution formula
dul = -~ kT de, and dua = {kT/¢) dc,

where ¢ is the concentration of the third component with respect

toc the second. From Egq.(4.202b), we get

37 )
( S) = —(kT/c)li"03 + fom—— de, {4.204a)
9c /¢ Jdc

and especially for polar or azimuthal anchorage, we further obtain

o7 J
(wwﬁ) = -(k1/) Moy - fo— 4,. (4.204b)
o /an, d¢

So, if the surface active agent is to reduce the anchoring
strength, we should observe a decrease or an increase in the
interfacial tension as the nematic is ocorientationally deformed,
according to which o¢f £ and AI&S ig fixed during the
deformation. If we take K~10"11 N and A~10""m as before, we

have fo*-5X162 J/m3. Therefore, if the extrapolation length

7m during the addition of 10_4 mole fraction of the

varies by 107
agent, we find from the above that the orientational contribution
to S?QVfac igs about *1 J/m2+ (mol fraction), and hence the
absolute change of Tg is s;l()"4 J/mz. Although the rate of change
is remarkably large, the absclute magnitude of the change 1is
negligibly small in comparison with the interfacial tension of
ordinary fluids, which is normally 107 3~10"1 g/m2.

Nevertheless, the change of the anchoring strength associated
with the addition of a surface active agent may not be necessarily

linearly dependent on its concentration as depicted in Fig.4.21.
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This presents a good contrast with the Langmuir type adsorption,
which is, at small concentrations, linearly dependent on the
concentration. Therefore, even though the absolute effect is not
large, the orientational effect 1is expected to presents a
qualitatively different feature characterized by the nonlinearity

and the dependence on the degree of orientational deformation.

4.8.2 Surface entropy and the temperature-~dependence of the
interfacial tension

A. Surface entropy as a function of orientational deformation
In completely the same manner ags for adsorption, we can

write down an expression for the surface entropy:

R
1Ss= 183 _ J‘ ex 9fo dr - oo 3“1(1‘%"3’
R oT a(dni/dr) R oT
ex
fo 3
+.I. E;;m (Rex - Rs) dfs, {3223,
0 (4.205)
where 153 represents the relative surface entropy with respect to

the first component as defined by
158 = 5 - (As/Ap T,

Here, too, My and fi are regarded as a function of other
variables. For a polar anchorage under a weak deformation, we

obtain, up to first order in f£.,

d 3 96
ls: = 1s° + [ L + I, 2 & 1nf(83)] e
PP 2K.f(0,) 96 T
d
+ L 2 9 & i
P ar 2K5£(0 ) (4.206a)

where the dividing surface is located at the surface of tension.

For an azimuthal anchorage, we get
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d 3 30
1s8 = ls, + L —% + L 2 —&—— — 1ng(o,)—"°
8 aT 2K,9(8 ) 39
+ L2 9 de .
2 3T 2K;9(8,) (4.206b)

If the scaling constant approximation holds, the above equations

are respectively rewritten as

o6 1 g 4

'sf = 1so v L, —®+ 1L 2 -£, (4.207a)
P oor P 2£(0,) 3T K,
9¢ 1 3 4

's8 = 1so v+ L, —%+ 12 -2, (4.207b)
T 2g(8,) BT X,

Furthermore, for sufficiently weak deformations, they can be

written in terms of the strain components as follows:

1g8 . lg_ 4 o K3f(@§“) 8®em c 2 £(O_) Emkl
s - e sp sp ’
de aT 2 ST de

(4.207c)
leg8 _ 1 ng{@e) a@e_ 2 g(@ ) ..?.....k.é..

Ss = So + Csa Csa —

de ot 2 ot de

(4.2074)

Ls evident in these results, the surface entropy is affected
by orientational deformations, if and only if thgre is a tempera-
ture~induced change of the easy axis and/or of the anchoring
strength. The effect of the anchoring strength, in particular, is
always such that when the anchorage weakens with temperature, the
surface entropy increases as the nematic 1is orientationally
deformed; therefore, the ordering near the interface should be
deteriorated more rapidly in the interfacial region than in the
bulk nematic under a curvature stress. On the other hand, the
centribution from the pretilt-angle variation is dependent on the
direction of the director deformation. When the nematic is deform-
ed in such a way as to enhance {(oppose) the variation of ne with

temperature, the surface entropy increases (decreases) for suffi-
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ciently small deformations. In other words, upon application of an
orientational torque so as to pull back the director at the inter-
face +toward +the direction that the director assumes at lower
temperatures, the interfacial layer should be brought into a more
ordered state!

Figure 4.22 shows the surface entropy as a function of the

applied torgue L calculated based upen the scaling constant

pr
approximation. Here, we have used the following values,

o6 P d
w—e® = - 0.1 rad/K, and — & - 3.4X10%m%J x,
oT 9T K,

in wview of the experimental results for the free surface of MBBA
(4-methoxybenzylidene-4'~butylaniline) reported by Chiarelli, et
al.[40,411]. From the

figure, we see that the t

orientational contribu- Suﬁqceiss
tion to surface entropy entropy | (J/mf-K)
reaches a value as large

as 2X107% 3/m?'K at L= 8xi0%

1074 J/m2. But, as evi-
deant from its almost

symmetrical shape about

the ordinate axis, the 4r

contribution of the

pretilt-angle part is at

present negligibly small. . 1 0 | ' R
For a free surface -2 -1 0 { 2xi0%

of undeformed nematic, curvature siress L (J/m2)

the surface entropy can

be estimated from the FI1G.4.22. Example of the change of .

temperature dependence surface entropy with the applied
curvature stress.
of the surface tension
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as in ordinary fluids. According to the measurement due to
Krishnaswamy and Shashidhar{42], the surface tension of MBBA
decreases with temperature by about 1"~~2><1(}“4 J/m2 per 1 K in

the nematic phase; g0 that, the surface entropy is estimated to
be about 1~2X10"4 J/K'mz. This shows that the orientational

deformation can exert significant influence on the interfacial
structure of nematic liquid crystals, if either the easy axis or
the anchoring strength undergoes a spontaneous variation

associated with temperature,

B. Temperature-dependence of the interfacial tension

As already noted, the temperature-induced c¢hange of an
interfacial tension is intimately related to the surface entropy.
By using Eq.(4.204) in Eq.(4.197), while keeping fo and u, (m22)

fixed, we obtain

fo
o (les _ .9 - L . -
arg = - [158 - 200 (ReyRy) + fo 57 (RexRg)dfo14T,

Conseguently, when normal behavior is assumed, the above equation

ig reduced to

o7 )
(...._.g = -158 - foo— 4. (4.208a)
ot /¢, oT

Similar to Eq.{(4.204b), when Al!s is fixed instead of fo, we

obtain

ar 2]
(—-—-—§ = -158 + £o— a4, (4.208b)
IT /An oT
8
for purely polar or azimuthal anchorage. Therefore, we observe

here again that the ceontribution of the pretilt angle disappears
in relation to the variation of the interfacial tension. This
result indicates that, concerning the interface of a deformed
nematic, the variation of the interfacial tension with temperature

does not faithfully reflect the surface entropy in the same sense
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that it does in the case of ordinary fluids; it is only related to
the part coming from the variation of the anchoring strength.
Equations (4.208a,b) show that, the contribution of
orientational deformation c¢an be in opposite direction, depending
on the choice of the independent corientational variable. Indeed,
vhen fo (or AN,) is fixed during the temperature variation, the
interfacial tension should behave as if the surface entropy were
increased (or decreased) relative te that in the undeformed
state. For an order-of-magnitude estimate, let us assume that de
increases at a rate of about 100 nm/K, which roughly corresponds
to the parameter taken above. Then, Egs.(4.208a,b) predict that
at £0=10% g/m> (L ~10"% 3/m®), the interfacial tension has to
vary at a rate of about 1074 mez'K, which is on the same order as
that for ordinary fluid surfaces. Obviously,_ at higher
orientational stress, the deformational contribution can be
overwhelmingly large when compared to the temperature-dependence
of the surface tension in the undeformed state. This suggests that
precise measurements of surface tension of nematics, for instance
by means of Wilhelmy plate method, require extra care to take
account of the states of deformation and of anchoring strength

near the point where the tensgion is actually in action.
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4.9 MAlignment transition at nematic interfaces: Thermodynamic

inequalities for critical exponents

The pretilt angle and the anchoring strength are in general
functions of temperature, pressure, and composition. And, in some
ingtances, they undergo a variation which can be regarded as a
kind of "phase transition.” Especially, when the transition is
accompanied by a singularity at a point in the phase space, it is
poggible to set forth some thermodynamic criteria for c¢ritical
exponents governing the behavior of the pretilt angle and the
anchoring strength around this point. This section is devoted to
formulate such conditions, and to discuss a few recent
experiments on the continuous alignment-transition ohserved at a

nematic free surface in the light of these results.

4,9.1 C(Lritical behavior of the anchoring strength

We shall first consider the case in which only the anchoring
strength undergoes a critical bshavior. Though the criticality
may in principle emerge in connection with any of temperature,
pressure, and/or composition, we restrict the present argument to
the case of temperature, gince other cases can be treated in
completely the same manner, resulting in identical conditions.

Imagine that the temperature derivative of the extrapoclation
length diverges at a temperature To:

L -g—g—°= 0, (4.209)
At temperatures near To, therefore, the extrapolation length may
be expressed as
dg ~ dgo + Al (To-T)/Tol”, (4.210)
with A being a temperature-independent constant, and # is the

critical exponent satigfying

7 < 1. (4.211)
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Conseguently, according as #<0 or 0<{#<l, de exhibits two
gqualitatively different behaviors as illustrated in Fig.4.23; in
the former case, the anchoring strength becomes infinitely weak at

Te, i.e., de~ﬂw or Ea~*0, but in the latter it remains finite.

-1

= S

o FIG.4.23. Two possible cases of the

2 critical variation of the extrapelation
o length. The extrapolation length cannot
-% assume an infinite gradient as long as
S it is finite,

(=%

E

=

@

temperature T

The basis of our present argument is the formulas for surface

entropy as derived in Section 4.8.2. Introducing Eq.(4.210) into
Eg.(4.206) and collecting only {(potentially) singular terms, we
ohtain

1as8 Lpz 7A {n-1)

85 = Sn(T) 3 L {(To~T)/To , (4,.212)

2K,£(0 ) To

where Sn(T) represents the noncritical part, and the upper and the
lower signs before the second term correspond to T<To and T>To.,
respectively. A similar eguation can also be derived for the case
of azimuthal anchorage.

Since thermodynamic state functions such as entropy and
internal energy cannot diverge at any finite temperature, one
might conclude from Eqg.(4.212) that it is in any case impossible
for the extrapolation length to show a critical behavior as

conceived above., This is indeed true when the extrapoclation length
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remainsg finite even at the c¢ritical peoint, i.e., #>0. Hence, we
can conclude that de cannct have a diverging slope as long as it
is finite.

However, it is clear that, when the anchoring strength tends
to wvanish as the critical point is apprcached, i.e., #<0, the
interface cannot indefinitely support a finite orientational

torgue L So, in this case, it is no longer allowed to consider

P
Lp as a constant independent of temperature. In order to take

account of this point, we have to rewrite the above equation in

terms of the strain, Ahsahsmhe, as in Egs.{207c,d). Using

Eq.(4.175), Eq.(4.2086) can be generally rewritten as

K-£(0_) c..% 3 30
's8 =158 + 2o (Cyp + BB~ —— 1nf£(0 ) 1—°
d P 2 36 e

e

2
_ Cgp® B KE(0)

2 oT d

(4.213)

e

Hence, upon subsgstitution of Eg.(4.210), we f£find

2
C K.£(8 ) -
18 ~ g (T) ; 8B 3 8 5 | (To-T)/To I"(7*) | (<0,
8 n +
2 ATo
(4.214)

This equation shows that for any "finite" strain, the entropy
should diverge if 0>7>-1. Since it is intuitively evident that
the strain at the surface of tension csp can be arbitrarily
chosen regardless of the anchoring strength, the requirement of
nondivergence of the left-hand side of Eq.(4.214) results in the

following condition to be satisfied by the c¢ritical exponent:
7 < -1, (4.215)

This ineguality means that the anchoring strength, when it
exhibits a critical decrease, should behave with a sufficiently
strong sigularity. The behavior of the anchoring energy at this

type of critical point is schematically shown in Fig.4.24.
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4.9.2 <Critical behavior of the pretilt angle

A. Continuous transition

Next, we consgider the case in which the pretilt angle
also experiences a c¢ritical variation when the temperature,
pressure, or composition is changed. Here, let us suppose that
the polar angle of ne varies with temperature, exhibiting a

diverging slope at the critical point Te [see Fig.4.251.

I

S
&
® I
© .
-
S |
= I
o :
T

FIG.4.25. Two possible cases of

the critical behavior of the ;

pretilt angle.
To

temperature T

4 - 112



Since the pretilt angle is a bounded function, we may now write

Oy ~ Og0 + BI(To-T)/TolV, (4.216)
with '

0 ¢ v <1,

Then, substituting Egq.(4.216) into Eg,.(4.213}, it follows
immediately that, as 1long as the anchoring strength remains
finite, the surface entropy is doomed to go to infinity as Te is
approached. Because the second and the third terms in Eg.(4.213)

have distinct dependences on C they have toc separately remain

8D’
finite at the critical temperatﬁre in order to prevent the surface
entropy from diverging. S0, the critical behavior of the pretilt
angle must always be accompanied by the critical weakening of the
anchoring strength. Not to mention, the c¢ritical exponent of the
extrapolation length has to satisfy the inequality as envisaged in
Egq.(4.214). As in Section 4.9.1, this result applies not only to
the temperature-induced rotation of the easy axis but also to
pressure- and composition-induced rotations, and to the azimuthal
angle as well.

As illustrated in Fig.4.25, we may distinguish two cases as
to how the pretilt angle behaves around the critical point: In the
first case (1), the slope, aee/ o, diverges on both sides of
the critical peint; but, in the second case (II), 383/ oT shows
& critical divergence on only one of the sides of T, while it
remaing finite on the other. Although it is clear from the above
argument that, the anchoring strength has to exhibit a critical
weakening on such a side of To where 30,/ 9T diverges, it is
not immediately apparent whether this remains true even when Te is
approached along the non-c¢ritical side in case 1I1. However, since
it 1is trivial that two orientational states with a same pretilt
angle but with different anchoring strengths cannot c¢oexist in

equilibrium, we can conclude that the anchoring strength must
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continucusly vanish even under such a c¢ircumstance. S0, once it
is established that the slope of the pretilt angle diverges in one
way or another at some temperature, pressure, and composition, the
anchering strength should be absolutely critical at this point as
shown in Fig.4.25.

B. Discontinuous transition

So far, we have considered only the case wherein the pretilt
angle undergoes a continuous transition. However, there may also
be an occasion, as observed experimentally [43, 441, that the
pretilt angle changes discontinuously as schematically shown in
Fig.4.26. As clear from the above arguments, the thermodynamics
presents noc criterion as to the "discontinuous"” transition itself,
but it appears to be of some interest here to discuss how such a

transgition can be related to continuous ones.

easy axis N,

FI1G.4.26. Discontinuous transition
of the alignment and the relation -
with the anchoring energy. The broken | ““-_m**h__

n

lines correspond to a metastable | 2
region of the surface alignment, i |
and the dotted line denotes the WS ] I
unstable region. At the end point ' |
of the metastable region, the ?
anchoring strength vanishes. @ | l

<)

£ | l

2 | |

£ l <

= ju N

-Rc ﬂ "ﬂa

temperature T
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Let us imagine that, as the temperature is increaged in
complete thermodynamic equilibrium, the easy direction N, Jjumps
abruptly from the lower branch with nel to the upper with hez at
a trangition temperature Tt' The thermodynamic potentials of upper
and lower branches become identical at this temperature in the
absence of orientational deformation. So that, the corresponding
interfacial tensions, T g1 and 1YY when expressed as functions

of the strain, may be schematically drawn as in Fig.4.27 around

Ttl
Analogous to liguid-~ y
vapor transitions, each 2 T
— v 1+
branch is expected to be " ,::::;#L‘,///
accompanied by a region § '
(%2
of metastable orientation §
{broken line in the B
L*]
figure) which terminates g
at the temperature where £
the orientation becomes
completely unstable.
Further pursuing this director n,
analogy, we would expect e e et e o i
that the metastable FIG.4.27. Behavior of the interfacial
tension arcound the discontinuous
regions are connected transition point of the pretilt angle.

with each other via the
region of instability (dotted line), resulting in a sigmoidal
curve as shown in Fig.4.26. Hence, there must be some degree of
super heating and super cooling, which gives rise to a hysteretic
behavior of the easy axis along heating and cooling cycles.

As clear from the figure, the boundary between the metastable
and unstable regions 1is c¢haracterized by the divergence of
anefa'r; in the c¢ase of liquid-vapor transition, this point

corresponds tc the "spinodal point." Therefore, according to the
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present thermodynamics, which may be valid even in the metastable
region, the anchoring strength has to vanish at this orientational
spinodal point with a critical exponent satisfying Eg.(4.215).
Now that the pretilt angle changes by a finite amount through the
transition from one branch to the other, there is no reason to
require the anchoring strength to be continuous, in contrast to
the case of continuous transition of the pretilt angle.
Accordingly, the anchoring strength is also expected to show a

hysteretic bshavior as illustrated in Fig.4.26.

4.9.3 Phase diagram for surface-induced alignment

As clear from the above arguments, the regiong (in the phase
diagram) which are separated by an alignment transition, be it
continuous or discontinuous, are also demarcated by the line
of zero anchoring strength, i.e., d4,=%0 or E,=0. In the case of an
n-component fluid in two-phase equilibria, the Gibhs phase rule
indicates that the number of the degrees of freedom is n, apart
from the orientational degrees of freedom. Therefore, the
eguation

Ea(T,P,ﬂj) =90 (4.217)

is to determine a hypersurface in this n-dimensional phase space.

b
nemotic coexistence

o D tine e e e

° e/ EeO FIG.4.28. Alignment phase diagram

g B for a single component nematic,

a Transition of the alignment or the

& A anchoring strength occurs at isolated
vaepor points on the coexistence curve.

temperature T
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In the case of a pure nematic substance, for example, the
nemati¢c-vapor coexistence 1line may be drawn as in Fig.4.28.
Hence, due to Eq.(4.217), the zero anchoring strength, even if it
might happen, should be in general realized only at isolated
points on the coexistence line. Especially, when there are a
couple of orientational spinodal points (B & D), the easy
direction nc pbecomes a multi-valued function in between these
points, and undergoes a discontinuous change at C.

Let us next consider a two-component f£fluid. Then, Eg.(4.204)

now specifies a line of

zerc anchoring strength 4
in the phase space span-
ned by T, P, and ¢ (the

concentration of the
gecond component) as
surface of
shown in Fig.4.29. In two-phase
. . . aquiiibrio
the figure depicted is a
situation in which the T:
line in gquestion is
separated into several
parts each of which cor-
responds to a different
alignment transition. Fig.4.29. Alignment phase diagram for a

two component system. the alignment
transition occurs along a line on

ture which is impossible !tm;equibrhmzmnface.

This is obviously a fea-

to emerge in the case of

a single component fluid. Within the region surrounded by a pair
of orientational spinodal lines, terminating at the intercepts C
and D with the lines of continuous alignment transition, ne is
again a multi-valued function.
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4.9.3 Experimental situation

For such substrates which induce an invariant alignment in
nematics, the temperature-dependence of the anchoring strength has
been 80 far measured only by a few authors. The substrates
examined include a surfactant-treated glass [45%] , @& wvacuum-
evaporated Si0 £ilm [1,46,47]), and a rubbed polyvinylalcohol
£ilm. And, especially. in the first two cases, in which the
alignments were homeotropic and planar respectively, the
anchoring strengths were found to exhibit an apparently critical
weakening toward the c¢learing temperature. The critical
exponents are however between (O and -1, and hence are
inconsistent with the thermodynamic ineguality, Eq.{(4.215),
characterizing the true critical behavior. Thig indicates that
the weakening has to terminate at a finite wvalue or to turn into
a more singular one. For more details, see Chapter 7, where the
measurements of the anchoring strength and their results are
fully described.

The control of pretilt angles at a solid-nematic interface is
one of the issues of greatest concern in LCD technology. s a
result, its measurement have been quite extensively carried out in
the 1last two decadesi481]. Although the effects of temperature
and of surface active agents on the pretilt angle on a sgolid
surface have been examined sporadically, they were mostly
gqualitative, and moreover, no correlational study has been done
to elucidate their connection with the anchoring strength.
However, it should be pointed out that some cases are now known
in which the pretilt angle undergoes a nearly critical change or
& discontinuous transition. The results of those studies are
compiled also in Chapter 7 with some thermodynamic discussions.

As far as the present author knows, the only one
investigation which is truly comparable with the thermodynamic

theory formulated in thisg section is the series of studies
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conducted by Chiarelli, et al. [40,41]1, who measured the
temperature-induced continuous transition of the pretilt angle
and the concomitant change of the anchoring strength at a £free
surface of MBBA. They observed, as reproduced in Fig.4.30, that
there igs a critical temperature T, (about 1 K below the clearing

point) toward which the pelar angle of the director @e tends to

<
@0 1 3 3 E ¥ L)
® 40r 12
“g"l Q'x{Tg_T)
[ =]
= 20F
™
&
< Or 1  ¥I1G.4.30. Critical behavior of
E { . : ; . the pretilt and the anchoring
2 energy at the free surface of
fad E.o¢(T.=T) MBBA observed by Chiarelli et al.
Zaxi0 - e te 1 (Ref.40 and 41)
&
| =
[*]
g 2t 5
S
=
g
< 0 i i I i I
-3 -2 -l 0 i 2

temperature T -T, {K)

zero obeying ()d”B[(To'T)fTozllz, {T<Ts). And, above To, the
director remaing perpendicular to the surface, i.e., the
homeotropic alignment. Furthermore, they measured the
temperature~dependence of the anchoring strength, showing that the
anchoering energy decreases with temperature toward To with a
linear relationship E,~A(To-T)/To.

Because 893/ dT diverges at Teo, the present thermodynamic
theory requires that the anchoring strength should vanish at To.
This is just what was observed in their experiments. Furthermore,

it should be noted that the linear relationship they found is
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consistent with the thermodynamic inequality for the «critical
exponent, Eq.(4.215).

Finally, it should be pointed out that for both pretilt angle
and anchoring strength, no quantitative investigation has ever
been made as to the influence of composition. However, as we have
gseen in the last three sub-sections, at an interface of a
multicomponent nematic, even richer variety of orientational
phenomena can hbe expected to occur than at an interface of a
single component nematic. This appears to be a promising field

open to future investigations,
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Chaptexr 5

STATISTICAL, MECHANICAL THEORIES

In the former chapter, we have made an extensgive
thermodynamic argument as to the orientational properties of a
nematic interface subjected to a curvature stress, and have
revised the concepts of the anchoring energy and of the
extrapolation length, which have s8¢0 far been naively understood
based on the Rapini-Papoular formalism. The purpose of this
chapter is to provide some microscopic bases for the surface~
induced alignment phenomena 8¢ as to supplement the argument in
the former chapter from a microscopic view point. Since our
primary interest in this thesis is focused on the phenomenological
description of the nematic interfaces, we will not make any
attempt here to perform detailed statistical mechanical
calculations to gquantitatively predict the molecular alignment at
nematic interfaces. Here, we shall be contented with setting a
conceptual bridge between the macroscopic and the microscopic
worlds, 1leaving such molecular approaches to the literature and
future invegstigations.

The £irst two secticons of this chapter are devoted to the
development of rigorous statistical mechanical theories for the
interfacial tension and the anchoring strength, respectively.
Though the derivation of an exact formula for £fundamental
quantities characterizing the nematic interface is of interest in
its own right, our present aim is, as emphasized above, to figure
out the qualifications that an appropriate phenomenological
degceription of the nematic interface should have. In the last
four sections, we indeed show that the Landau-de Gennes type
phenomenological theory of the nematic interface as developed by

Sluckin and Poniewierski [1] is just of this kind: it is general



aenough to take care of all the basic properties of a nematic
interface, yet gtill simple enough to aliow for easy treatment.
Within this theoretical framework. we invegstigate several
orientational phenomena of experimental interest such as (1)
Orientational wetting transition, (2) Contact angle phenomena at
nematic-isotropic transition, and {(3) Interfacial anchoring. As
we shall show in Chapters 6 and 7, the observations o¢f those
interfacial phenomena provide us with crucial and substantial
information as tc the orientational nature of the nematic
interface. The theoretical development in the present chapter
helps us appreciate the basic physics underlving the actual

obgervations.



5.1 Statistical mechanical theory of the interfacial tension of

nematics

5.1.1 Theoretical background

The interfacial tension of nematics, both in undeformed and
in deformed states, plays a fundamental role for characterizing
the orientational properties of a nematie interface, Since
Kirkwood and Buff formulated an exact statistical mechanical
expression of the surface tension of simple liquids, there have
appeared quite a few attempts of rigorous formulation of various
interfaces invelving not only mbnatomic but also polyatomic
{molecular) liquids [2]. Today, there are essentially two distinct
approaches for deriving exact expresgsions for the interfacial
tension [2]: one is the thermo-mechanical approach taken by
Kirkwood and Buff (31, and the other is an approach based on the
direct correlation function, due originally to Triezenberg and
Zwanzig [41. Though thegse approaches regult in apparently
distinct expressions based respectively on the intermolecular
potential and the pair distribution function and on the density
profile and the Ornstein~Zernike direct correlation function, they
have recently been shown (almost rigorously) to be eguivalent to
each other [5,6].

Though both of these approaches were originally concerned
with simple 1ligquids (whose constituents have only translatiocnal
degrees of freedom), these c¢an be rather straightforwardly
extended to the free surface of a polyatomic ligquid, which has
orientational degreeg of freedom as well, Gray and Gubbins
(7,81, and Davis[9] have derived a formally exact sxpression for
the surface tension of molecular 1liguid in the Kirkwood-Buff form.
The Triezenherg-Iwanzig approach has been extended to the free
gsurface of molecular liguidg by Sluckin ({101, Furthermore,
Navascues and Berry [11] have applied the Kirkwood-Buff theory to



a wall-gsimple liquid interface, proving an exact formula for the
boundary tension of a simple liquid to be useful in the study of
adsorption at solid surfaces.

Ag we have seen in the former chapter, the surface of a
nematic liquid crystal can be treated, when the bulk phase is free
from orientational deformation, as if it were no different from
the surface of ordinary molecular 1liguids. Hence, the exact
formulas as mentioned above are directly applicable to the
calculation of surface and interfacial tensions of nematics.
Parsons [12]1, Murakami [13], Croxton [14], and Parsons [15} took
this approach based on the Kirkwood-Buff formula, and obtained
(with extensive approximations as to the density profile and the
pair distribution function in the surface region, however) the
surface tension [12~15]1, the pretilt angle {12,15}, and the degree
of orientational order near the interface [14,15].

There are several characteristic interfacial phenomena of
{presumably) orientational origin which those molecular
statistical theories have been aimed to explain: Firstly, it is of
course the occurrence of an easy axis at an interface; secondly,
the gmall but finite jump ¢of the surface tension of nematics often
observed at the temperature of the nematic to isotropic transition
[16~-201; and, thirdly, the reversal of the temperature dependence
of the surface tension in the vicinity of the nematic-isotropic
transition point {16,17]. The thecretical treatments cited above
are indeed partially succegsful for explaning these observations.
It should be commented, however, that despite these endeavors, it
ig as vet hardly posgsible to satigsfactorily trace back all the
aspects of the actual nematic interfaces to the intermclecular
interactions operating at the interface. Generally speaking, the
degree of success of such a microscopic theory is very difficult
to assesgs, because of the good deal of approximations often

involved in such theories, Indeed, even when a certain theory



fails to explain one observaticon or the cother, it is not usually
clear which of the intermolecular interaction employed or the
approximation is inadeguate. Even more seriously, the
orientational contribution to the interfacial tension is believed
to occupy only a very small part (10“1~10“5) of the entire
~tension of the interface. This is in part making the theoretical
estimate of the orientational contribution extremely difficult,
This situation clearly signifies the importance of a statistical
mechanical route which allows for the construction of a at least
"qualitatively" correct picture of the nematic interface.

In ¢this section, we would like to show up some qualitative
aspects of the interface between a rigid wall and an undeformed
nematic £rom a statistical mechanical view point, Extending the
theory due to Navascues and Berry [11}, we derive a formally exact
expresgion for the tension of a rigid wall-nematic interface
taking explicit account of the steric repulsion between the wall
and the nematic molecule. On the basis of this exact expregsgion,
we point out that the measurement of the contact angle at the
nematic~isotropic~-solid three-phase 1ine of contact {to be
observable at the clearing point) is a promising experiment for
extracting information on the anisotropic interaction working at
the interface,

The present formula for the interfacial tension consists of
the contributions £from the "direct interaction between the wall
and the nematic" and from the "structural perturbation near the
interface." The latter contribution, in particular, is the factor
which most o¢f the existing molecular theories of the nematic
interface neglect, in spite of the fact that because of the long
range nature of the orientational order in nematics, the
gtructural variation induced by the solid hag consgsiderable
influence on the orientational property of the nematic interface.

As pointed out by Navascues and Berry, this point also indicates



the inadeguacy of the Girifalce-Good-Fowkes "semi-empirical"”
equation, which has sometimes been applied to nematics for
estimating the interfacial tension between a solid and a nematic
from the knowledge of the individual surface tensions of the solid
and the nematic phases. We will emphasize this point through the
consideration of an exact criterion that the interfacial tension
of nematics should obey.

The present exact formula provides a microscopic basgis for
the heuristic argument due to Okano {21] who showed that the
anisotropic steric interaction between the wall and the nematic
always favors a planar alignment, And it can alsc be expected to
serve as a good conceptual background for‘the mean~field theories
developed by Kimura [22-24]1, Telo da Gama {25,261, and Sullivan
[27], which were shown to provide gualitatively good explanation

for the alignment and tension at various nematic interfaces.

5.1.2 ¥Formal expression of the wall-nematic interfacial tension

Let us congider a gsingle component nematic in contact with a

rigid and structureless wall

F 3

in the absence of an external z

field. We imagine that the nemotic

gurface of the wall, i.e.,

the surface of zero-adsorp-

tion of the soclid phase, 1is

located at z=0, and that the N§§\ : y'
\ A

nematic occupies the senmi- * : ;
infinite region z>0 'i///é i % ;
[Fig.5.1]. We assume that the § ,S;é”"g"'?f”
nematic is comprised of lath- N i

like molecules as shown in e R e e
FIG.5.1, Geometory of the model. .

Fig.5.2 whose orientation is



fully specified by a unit
vector w. Here, we work with
the Helmholtz free energy F
of a volume V having the area
A parallel to the interface.
We assume that the nematic
molecules are interacting via
pairwise potential
B(r,w;, Ny, 05)= 45,

and that the wall exerts a

7

Z{w)

S S

solid

FIG.5.2, Nematic

molecule in con-
tact with a hard
wall, Due to the
hard core repul-
sion, a mclecule
with W cannot
come closer to
the wall than
Z(w.

potential Vw(z,w} on nematic molecules, which we assume to be

uniform in the plane parallel to the interface.

Vw{z,w) inte the 1long-range attractive part Va(z,w)

We separate

and the

gteric repulsive part which goes to infinity when the molecule and

the wall overlap with each other;

namely, for each orientation w,

the center of mass of a molecule can approach up to the distance

2({w) from the wall surface as shown in Fig.5.2.

Here, we follow the method of Navascues and Berry [1131. Let N

and Ns be the number of molecules of the nematic and of the solid
according te Eg.(4.6), the

interfacial tension may be written as

prhases, respectively. Then,

@)

oA T,V,N,N,"

Because of the assumption of the rigid soliid,

clear the Eg.(5.1) can also be written as

r=(=

aA TrVO;N:

where V., is the volume above the zero-adsorption

golid phase (z2=0}.

it is

(5.1)

immediately

(5.2)

plane of the

Let Zc be the configuiational partition function defined by



1
ZC(T;V,A,HS,N) = *~J.{drdun expi-~ UT/kT], (5.3)
N!

where UT(rl,wl,....rN,wN) is the total potential energy of the

system. Here, it should be noted that because of the rigidity of
the solid, it is only nacesgsgary to integrate the Gibbs factor over
the coordinate of the molecules in the nematic phase. By writing
the kinetic part of the partition function as zkin' the Helmholtz

free energy can now be given by
F = ~kT 1n(zkinzc)‘ (6.4)

Therefore, using Eq.(5.4) in Eq.{(5.1), we obtain

1 /81
r = -KT __(_____C‘) (5.8)
2 \OA /gy NN,

The total internal energy can be dividing into the following

three contributions,

Up = Ugg + Ug, + U (5.6)

88 gn nn’

corresponding to the solid-sgsolid, solid-nematic, and nematic-
nematic interactions. Due to the assumption of the rigid solid,
the first term is completely determined for given A and Ns‘ In
terms of the intermolecular and the wall-nematic potentials, we
may further write
Ugp = 12 vw(ri""i)' and Unn =i>2j qb(ri,wi,rj,mj).
(5.7)

Denoting usn+unn by BT*, the configurational partition function
can be decoupled into the part coming €from the solid-solid

interaction and that from the rest of the internal energy Ug,:

X
Tgg* 2

1
Zc = expE-Bsg/kT]' ;—?f {drdw} expl- UT/kT}

(5.8)



Consequently, using Eq.(5.8}) in Eg.(5.5), we see that the
interfacial tengion can also be split into individual

contributionsg to give

T o= Tg* r™, (5.9
where 1 31 5u
rg = KT — (MJS z(wméﬁ) (5.10)
Igg \OR /o oy N, VOR iy .
x
1 /92
r* = -KkT ;;(%*_) (5.11)

9A .
T,Vo,Ng

Tg and T* are, respectively, the surface tension of the solid
phase and the boundary tension of the nematic phase with respect
to the dividing surface located at the point of zero-adsorption of
the solid phase [see Section 4.4.31.

The calculation of

r* can be readily fa- z
gilitated by means of a
Vg =const.
modified Green's method
’,4"““ iiadagl" ol ing """.‘T
[28]. Let Lx’ Ly, and ol .- -”,—:
L, be the lengths of the ‘ GOREEEEES SEEEE e :
nematic wvolume in ques~ bz ' ,x"y;
A

tion along x-, y-, and st {_WW o -
- £1 1 LY FIG.5.3. Variation of
Z-axes, respectivedy X the interface area at
[gee Fig.5.31]1; i.e., _ constant volume.
Vo=LxLyLz. Green's method consists in the change of integration

variables in such a way that the volume change can be entirely

cagt into the change in interaction potentials:
¥ o v
x —x/Lx, Yy -ylby, (5.12)

and, here, in order to take explicit account of the hard-core

interaction between the wall and the nematic, we especially define



zg'={z - Z(w)l/[Lz - Z(wl1l, {(5.13)

for each molecular orientation w. The Jacobian associated with
this scaling transformation of linear dimension is not simply the

volume Vo, ag in the original Green's method, but is given by

a(ri,r&,....rﬂ}

J{{w}) =
a{r’i,r'z,-n-r'n}
N N
= (L)t L, - 20 ). (5.14)

Thus, in terms of the new variables, the partition function Z* can

be written as

1 1 i 1 1
X ] ) ] L]
7% = ; dml_..dwNJ’ dxlf dyzf dzl“"‘f dzy J({w})
' 0 0 0 ¢

Xexp{—{}g V(P ) ¢+ 2 ¢(ri,wi,l’-,wj}}/k'r}.

123 i (5.15)
in which the range of integration on z' has been restricted beyond
2'=0 in view of the hard-core repulsion between the wall and the
nematic, and hence the full singlet potential Vw due to the wall
hag been replaced by its attractive part Va.

In order to calculate T*, we chose to differentiate Z* by Ly
at fixed Vo and N; note here that, since the interfacial tension
is now defined as a surface-excess thermodynamic potential per
unit area [Eg.{4.11)1, it should not in equilibrium depend on the
manner in which the interface is expanded; further, it must be
strictly discerned from the surface stress [29].

The Ly—derivative of 7* consists of two terms resulting from
the derivative of the Jaccobian and that of the Gibbs factor. For
example, since the Jacobian is differentiated at constant volume
to give
Z(w,)

- I(wy)

0
e J{w})y = ~(1/L J)J({w}I{Z }, (5.16)
oL y i

4 1 2



it 1is readily confirmed on account of Egs.(5.11) and (5.158) that
this term gives rise to a contribution to the interfacial tension
as

Z(w)

N KT
r (J) = —= drdw ——— gp{(r,w), {(5.11)

vo I.Iz - Z(w)

after transforming back to the original variables, where p(F,w)
ig the density of a molecule with the orientation & at the point
. In much the same manner, we get the part which comes from the
derivatives of the Gibbs factor:
rx(6) = — fdrldwldrzdwz [y12m2~ zlzﬁflzl
2A 9o 9z,
Xpa(li,wy,T,5,05)

4 ov_(z,w)
- - fdrdw z—3—— p(r,w)
A J oz
1 i 2] - L_Z_ 89512
1 z - L oV, (2, w)
- “.[dfdw s B T () ) B G (T, W),
L, ~ Z(w) oz

z
(5.18)

where 92"1'031"2f“2) ig the pair distribution function, and
Yi2 and Zya denote ¥Y1-Ya and Z1-%3. respectively. Furthermore,

upon using the first member of the Yvon-Born-Green hierarchy [2],

o o
KT — p(F,,w,) - p{¥,,w)— V_{2,,w,)
321 i 1 1 1 3z a‘“1 1

d
= j€’24w2'§;¢1z Pally Wy, Fa 0y,

which rigorously holds for zI>Z{w1) at pregent. The last two

terms of Eq.(5.18) can be transformed, in combination with
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Eq.(5.17}, to a surface term, and we £inally obtain

1 o o9

ov, (z,w)
- J}zdw zarﬁwww o{z,w)
2

+ kT fdw ZCw)plZ(wli+0,wl. (5.19)

Here, we have used the fact that p(r,wl=p(z,w).

_ This offers an exact statistical mechanical expression for
the boundary tension at a rigid soclid-nematic 1liguid crystal
interface. This is a generalization of the result of Navascues and
Berry ([11] to a polyatomic liquid interface. We see that r* is
comprised of two qualitatively distinct contributions 7 (1) and
T*(Z} which represent, respectively, the part of the interaction
among nematic molecules and that ¢of the direct interaction between

the s8¢lid and the nematic:

r* = ?*(1) + r*{Z), (5.20)

where T*(l) stands for the first term in Eg.(5.19), and T*(Z}

the remaining two terms. Note that in the absence ¢of the solid
wall, Eg.(5.19) reduces to the exact formulas derived by Gray and
Gubbins [7.831, and Davis (9] for molecular liguid surfaces, which
also applies to a free gsurface of a nematic liguid and to a
nematic-isotropic interface. Finally, it is of interest to point
out that the last term of the above represents the contribution of
the hard-core interaction between the rigid wall and the nematic,
and as such, it provides a formal proof for the result due to
Ckano [211]. Namely, the last term in Eq.(5.19) tends to orient
nematic molecules parallel to the interface so as to increase the

packing entropy. Evidently, this is one of many factors which
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may influence the alignment at the interface, and the true
orientation should be determined via the competition among the

various contributions exigting in Eq.{5.19).

A. Separation into isotropic and anisotropic contributions:
Contact angle at the nematic-isotropic-solid three-phase line of
contact [18-20]

Concerning the orientational property of a nematic interface,
the point of primary interest isg the anisotropic part of the
interfacial tension. And, it iz indeed the aim of experiments to
extract that part from wvarious observations of a nematic
interface.

In order to gain some insight from the present exact formula
into this point, it is convenient to separate the density into the

igsotropic and the anisotropic part:

plz,w) = <p(z,w)>w + na(z,w) {5.21)
= Polz) + py(z,w),
+ }’.)Za{ r,, wg, l’z,wz),

(5.22)
where < > = denotes an unweighted average over w, and pa(z,w)
repregsents the anisotropic part of the density which vanishes when
averaged over the molecular orientation. 1In terms of the radial

distribution function g(f]j(ol,fz,wz), the pair distribution
function can be written as

P, Wy, To,wy) = (P, )P, w)g(r , w ., Py, wy).

Then, we c¢an also make a division of the pair distribution
function as follows:

5 - 13



ﬁz(rl,wl,rz,wz} = pa(zl)po(zz)<g(r1,w1,rz,w2)>wl’w2

P,y 0,),

(5.23)
where the last term is the collection of all the anisotropic
terms.

Correspeonding to these distinctions between the isotropic and
the anisotropic parts, the interfacial tension is also seen to be

divided into the respective parts:

™ = Tigo * Tar (5.24)

and hence, by adding Tg to both sides, we have
X

where T; is the anisotropic part which comes from Pa and Rog-
As clear from the course of derivation, T ijgq 18 the interfacial
tension between the solid and a reference "gimple” liguid in which
the orientation dependence of the nematic phase is smeared out.
Obviously, the anisotropic part of the nematic-nematic and the
wall-nematic interactions contributes only to T;-

According to the generalized van der Waals theory of nematic
interfaces due to Telo da Gama [25,26], the interfacial tension
between a nematic and a vapor, and even that between a nematic and
its isotropic liguid are primarily dominated by the change of
(orientation~averaged) density across the interface; it should be
pointed out, however, that Sluckin [1] argued that the dominance
of +the density change at the nematic-isotropic interface is an
artifact of the model of Telo da Gama. Anyway, unless the
interfacial tension is extremely small as in the case of nematic-

isotropic interface, we can conceive that 7. is the main

iso
contribution to the total interfacial tension.
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Let us now consider the

contact angle of a drop of a f 6

nematic liguid crystal placed

on a solid surface [Fig.5.4]. vapor }gv

On negligence of a gmall )
effect due to gas adsorption -st Vg,n {Znemahc
on the s0lid surface, we see »;f////’/ﬂ/i/////;;/ﬂ///

from Young's equation that
the contact angle of the V?IG.5.4. Contact angle of a nematic

nematic @ should satisfy drop at a solid-vapor interface,

= Tgn * Tnvcog{-}, (5.26)

Ts
where T an ig the golid-nematic interfacial tengion, 1i.e, Y in
the present notation. So that, according to Egs.(5.23) and

(5.24), we find
"T*/Tvn :-(rzso + r;}/?vn==cosﬂ. {(5.27)

Therefore, except for an accidental case in which T:so becomes as
small as r;, the anisotropic contribution to the contact angle is

obscured by the isotropic contribution.

Next we consider a contact angle of a nematic droplet in a

bit different setting as

ghown in Fig.5.5. Here, the é Ve %
nematic drop is placed at the

isotropic
|4

interface between its own
isotropic liguid, which is

coexisting with the nematic

phase at the transition tem-

prature, and a solid wall.

We can show that the contact
drop at a solid-isotropic interface
angle o gives a8 direct mea-

*
sure of Tar

5 - 15



Since the density of a nematic liquid crystal changes only
less than one percent across the nematic-isotropic transgsition, it

is expected to be a good approximation, at least near the clearing

temperature, to asgume that <p(z,u)}>w and
<g(r1,u)1,f2,u)2)>w1 Wy is invariant across the nematic-
isotropic transition. Under this condition, the relevant

interfacial tensiong can be written as

¥*

Tsn ® Tigso * Tan- (5.28)
x
Tgi = Tigo * Tair (5.29)
where 7y, and 7,; are the anisotropic parts of the solid~liquid

interfacial tensicon when the liquid is in the nematic and the
igsotropic states at Tc, respectively. 1Using Eqgs.(5.28) and (5.29)

in the relevant Young's eguation, we obtain

Tawg = 7
~Aai __ab.. : cosa. (5.30)

This equation clearly shows that the contact angle of the nematic
liguid at the nematic-isotropic~solid three-phase line of contact
at the temperature of nematic-isotropic coexistence igs determined
only by the anisotropic part of the interfacial tension and the
tension of the nematic-isotropic interface. S0, in contrast to
the ordinary contact angles at a solid-vapor interface, the
contact angle o is expected to provide direct information on the
anisotropic nature of the solid-nematic interface.

Extensive measurements [18-20] of this type of contact angle

at various golid-nematic systems will be described in Chapter 7.



5§.1.3 Fundamental properties of the tension of a solld wall-

undeformed nematic interface

A. Work of adhesion and related problems

The work of adhesion hetween a solid and a nematic liquid can
be defined in the same manner as for an ordinary 1liguid-solid
system. Let us imagine that, initially the s0lid and the nematic
liquid are separated by a large distance, being in eguilibrium
with their vapor phase, and then are reversibly put into c¢ontact
with each other to form a planar interface [Fig.5.6]. Now the
work of adhesion is defined as the amount of work which the
system can perform to the environment during this process.
Obviously, it <c¢an be equivalently defined as the work needed ¢to
reversibly separate the s0lid and the nematic liquid to infinite

distance,

/ '
/, nematic ,f/

VAR AV VAR WA BV A I

“‘_‘, nematic 1 W, .
— =~ o vopor

7w ur
7777

Fié;5.6. Definin&wﬁfbgééénéfwéhe work of adhesion between
a solid and a nematic liguid crystal.

Let us denote the tensions of the solid-nematic, soclid-vapor,
and nematic-vapor interfaces by T sn’ T gvr and T av’
respectively. Then, by definition, the work of adhesion Wa can be
written as

Tgy - Tgn- (5.31)
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By substracting the surface tension of the solid Tg from Tay and

from 7 Eg.(5.31) can be rewritten in the form,

sn’

W, o= *

x

where the asterisk on the last two terms denotes the boundary
tension defined in the former section.

Navascues and Berry {11] devised a convenient way to clearly
show up the underlying physics of Eq.(5.32). The procedure of
separation of the nematic and the solid as depicted in Fig.5.6 can
be regarded as a seguence of two stages [see Fig.5.71 as follows:
In the first stage, the nematic liquid is removed from the solid
without changing the density profile, i.e. a mere translation of
p{z,w); and in the second, the nematic is relaxed to its

eguilibrium nematic-vapor density profile. Let ug denote the

i 2. 3.

nematic

AN

solid

AN

N

Wy(2) Wlt)

Mﬁfé:S.?. Two staéés of éeparation between a nematiéwé;é a
solid wall. PFrom 1 to 2, the interfacial structure of the
liguid is fized, and from 2 to 3, it is allowed to relax.

amount of work associated with these two processes by Wa(ZE and

Wa(l), then we readily find from Egs.(5.19) and (5.20) that

Wy = W,(2) + W (1), (5.33)
where
v, (2) = - 77(2), (5.34)
x
Wa(1) = rpg - 7 (D). (5.35)

Here, we have neglected Tsv* in comparison with 7 because

*
sn -
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the density in the vapor phase is much smaller than that in the
nematic phage near its triple point; as shown in Eq.(5.19), T* is
at least linear in the density in the medium in contact with the
solid.

Equation (5.33) shows that the work of adhesion between a
solid and a nematic consists of the (solid-nematic) interaction
term W,(2) and the relaxation term W,(1). 1In contrast to the
gsimple liguid treated by Navascues and Berry [11]1, the relaxation
term of a polyatomic liquid involves the contribution £from the
relaxation of the orientational structure in the interfacial
region. In particular, since the nematic ligquid crystal has a
long range orientational order, such an orientational relaxation
will not be localized within a few molecules distance from the
interface, as 1is often the case for oscillating density profile
found at a wall-simple ligquid interface, but will extend over a
range on the order of the coherence length of the nematic order.
This situation is shown in Fig.5.8 in relation to the two stages

of separation as already conceived.

i. 2. 3
A 7]
Ve nematic //”
= ////— g
e r/’/,"”d“ /1
/ iy
/1 g, o

NS

interface associated with the two stages of separation.

Here, the order parameter changes over the length of the
order of coherence length EC, which is much larger than

the atomic dimension a.
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The importance of this long-ranged orientational structure
near the interface is indeed one of the most striking factors of
the nematic interface, which is deeply reflected in its various
macrogscoplic properties such as those listed at the beginning of
this section. We will present some more examplies of relevant

experimental observations in Chapters 6 and 7.

1. Girifalco-Good-Fowkes theory of the work ¢f adhesion

In the light of the present theory, we would like to briefly
review the conventional theories of the work of adhesion, which
have been applied to the problem of the surface-induced alignment.

The theory due to Girifalco and Good [30,31]1 and its second
version extended by Fowkes [32] are the begst-known and the most
fregquently used theory of the spolid-liquid interfacial tension.
Their theory rests on the direct calculation of the force acting
between a solid and a liquid media on an assumption that the
arrangement of molecules in these phaseg are invariant regardless
of the separation between them. In analogy with the Berthelot
relation between unlike molecules, they have write down the work
of adhesion between two media, a and b, in terms of the surface

tensions of a and b:
= 1/2
Wap = 2¢(Tarb) , {(5.36)
and hence the interfacial tension T ap 48
Tap = Ta * Ty - 28Cr 7172, (5.37)

And, by direct calculation of the force between them, ¢ is
expressed in terms of the molar volume of consituents, Va and Vb,
ag follows:

= 1/3,4 1/3 1/3 1/3,2
¢ = v, Vy /v, +Vy ) o (5.38)

And they showed that for most organic liguids, $ iz something

arcund unity. Furthermore, Fowkes consgidered the contributions of



the various intermolecular interactions, i.e, polar {p),
dispersion (d4), hydrogen-bonding {(h), etc., tc be independent, and

expresged the interfacial tension as a sum of each contritubion:
r = 7ri(p) + v(&) + r(h)+ ... (5.39)

And, he applied Eg.(5.37) with ¢=1 to each component of the
interfacial tension.

In spite of this clearly very crude nature of the theory, it
ig now widely accepted that the formula reproduces the interfacial
tension fairly well in a wide range of materials. However, it
should be strictly emphasized that, the theory is not at all
rigorous, but is intended to provide an empirical formula for the
interfacial tension which is not readily measurable. As they
themselves admitted 1{30), the formula may involve an error as
large as a few 10'3 J/mz, and thus it can be regarded ag a good
one if and only if an error of this level is permissible.

The orientational part of the interfacial tension T; isg, if
it can be identified with the ancheoring energies, in reality less
than 10™3 J/m?. It seems to shed considerable doubt on the
applicability of this theory to the surface-alignment of liquid

crystals unless it is subjected to close scrutiny.

As pointed out by Navascuesg and Berry, the scurce of error in
the Girifalco-Good-Fowkes theory is hard toc assess from a rigorous
statistical mechanijical point of view. However, the apparent
drawback of their theory is the neglect of the possible structural
relaxations near the interface. In an attempt to calculate the
alignment and anchoring energy at a solid-nematic interface,
Mada [33], Okano and Murakami [34], Bernasconi, et al.[35], and
Okano, et al. [36] have employed a similar approach to calculate
the interfacial tension between a nematic and a solid based on the

Lifshitz theory of van der Waals force. They assumed the
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structure of those media are everywhere bulklike, and compared the
interaction free energies when the nematic director is parallel or
perpendicular tc the interface. In this regpect, their theories
are essentially identical with the Girifalco-Good-Fowkes theory,
thereby suffering from the same pitfall as the latter. Below we
present one example which clearly demonstrates the importance of
a structural consideration so as to reach a correct picture of the

nematic interface.

B. Rigorousg criteria for the interfacial tension of nematics

Let us consider a nematic interface at the temperature of
nematic-isotropic transition. And, we address a guestion how large
a digcontinuity the interfacial tension can experience as the bulk
phase transforms from one phase to the other.

Since the interfacial tension for a planar interface is an
excess thermodynamic potential per unit area, it must assume the
minimum value in equilibrium at constant temperature and chemical
potential. It can therefore be shown that the absolute difference
hetween Tn and Ti- which are respectively the interfacial
tensionsg when the bulk phasge is in the nematic and the isotropic

phases, is bounded by the nematic-isotropic interfacial tension:

Thig ineguality follows immediately from the consideration of the

situation as shown in Fig.5.9.

V. Y+ P, e g™
+ 4 Eoon ' .FIG.5.9. Schematic

proof of the inequality.

\“‘xuh___ nematic : nematic By placing a macrosco-
- pic laver of the iso-

e isofropic tropic liquid between
the substrate and the

nematic phase, the

- b ) reulting interfacial

tension must be larger
than the equilibrium

{1} equitibrium {2) nonequilibrium value,

z ' z
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For example, when it happens that
Ty 2 "n* Thi- (5.41)

we can reduce the interfacial tension Ty at worst, to Tnt¥ni
by placing a macroscopic layer of the nematic liguid in between
the wall or vapor and the isotropic bulk phase. However, since the

real system can do even better, we must always have

Ty $7n* Thi- (5.42)

By exchanging the role of the nematic and the isotropic phases, we

can similarly obtain

T £ 73 % Thiv (5.43)

It completes the proof of the degired inequality. This is a
rigorous criterion, first explicitly pointed out by Telo da Gama
[256]1, which a nematic interface should obey at the nematic-
igsotropic transition temperature. Ag clear from this heuristic
argument, when the equality holds, we expect that the nematic or
the isotropic 1liquid completely wets the interface intruding in
between the two phases in contact. This condition is often
violated in mean~field calculations in which the structure

relaxation near the nematic interface is neglected.
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5.2 Density functional theory of the anchoring strength

So¢ far in this chapter, we have congidered only a nematic
interface in the absence of bulk orientational deformations. This
section is devoted to a theoretical study of how a bounded nematic
behaves under an externally applied curvature stress, with a view
to formulating a statistical mechanical expression for the
anchoring strength. For the sake of brevity, we sgshall restrict
our attention o a nematic in contact with a rigid and
structureless wall, which can be expected to serve as & good model

of a real solid-~nematic interface.

5.2.1 Introduction

As we have already shown in Chapter 4, the anchoring strength
at a nematic interface is a kind of surface-specific elastic
constant which degcribes the resgsponse of the interface +o a
curvature stress existing in the bulk nematic [see section 4.7.3].
Recently, several rigoroug statistical mechanical theories have
been developed £or the bulk elastic constants of condensed media
ineluding ligquid crystals [37-42]. In comparison with the
classical molecular theories of curvature elasticity {[43-48],
those theories share distinctive characteristics in common.
Namely, the microscopic structure of the matter plays the primary
role, while the molecular interaction between constituent
particles are implicitly taken intoc account through the structure.
By wvirtue of this property, the elastic constants, which are
always defined in relation to structural perturbations, can be
rigorously expressed in terms of structural correlation functions.
In view of the "fluctuation-dissipation theorem,"” it appears gquite
natural that such structural approaches have been far more
successful than conventional interaction-based approaches.

The density functional theory {21, on which those structure-



oriented theories are invariably based, was originally developed
as a tool to treat interacting electron gas. Later, however, it
has proved to be remarkably useful in the study of inhomogeneous
liquids. It offers a general and systematic way to treat the
statistical mechanical aspects of structural problems. In this
gection, we apply the density functiocnal theory to the interface
involving an orientationally deformed nematic, and on the basis of
the thermodynamic definition of the anchoring strength as given in
the former chapter, we develop & formally exact structure-based
expression for the extrapolation 1length. Furthermore, by
discriminating the “energetistic” and the "geometrical”
extrapolation lengths, which coincide with each other in
equilibrium, we prove a simple variational property that these
extrapolation 1lengths to obey. And, by using a simple trial
function, we show that the extrapolation length consists of two
distinet contributions which respectively allow interpretations
as coming from the interaction between the wall and the nematic
and from the interfacial anomaly of the Frank elastic constants.
Finally, we will shortly discuss the problem concerning the second

order elasticity.
5.2.2 Dengity functional theory

Here, we summarize some fundamental concepts and formulas of
the dengity functional theory ({2,i0] 80 as to aid the
understanding of later arguments.

We consider a single component liquid comprised of rod like

ext " We
asgsume that the molecule is rigid so that its position can be

molecules 1in the volume V under an external potential V

specified by Y and the orientation by a unit vector @ along the
long axis of the molecule, We consider a grand canonical ensem-
ble at temperature T and chemical potential p; then the egquilib-

rium probability density € for N molecules can be written as
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. -1
fo = B expE—(HN - uNY/KRTI, (5.44)
where k is the Boltzmann constant, and HN the Hamiltonian for N

molecules given by

N N
Hy = Z Ti + U(rl’wl""'rﬂ’wﬂ) + 2 vext(ri,w ),

i=1 i=1

with Ti being the kinetic energy of the i-th molecule and U being

i

the potential energy due to intermolecular interactions. And, ©
represents the grand partition function, which is connected with

the grand thermodynamic potential Q via
@ = ~(1/kTi1nE (5.45%)

The equilibrium density po(¥,w) is given as an ensembhle average
of the density operator p(l’,w)=28(f—ri)8{w—wi):

Poll,w) = <:>(r,w)>, (5.486)

where <) denotes the ensemble average.
It is clear from the above eguations that, once the external
potential Vext

pLr,w) are determined at every temperature and chemical

i8 given, the probability dengity €. and hence

potential. Furthermore, it is possible to prove that the converse
is also true, namely that for an arbitrary p(FfF,w), there exists

a unigque external potential which gives rise, in equilibrium, to
the density in question ([21. Thus, it becomes possible to
conceive f, as a functiocnal of p(r,w). Consequently, we can

define the key gquantity in the density functional theory, the
"intrinsic”™ Helmholtz free energy Fin[pl, as a functional of the

density by
Fiplol =T, Eo(zwi + U + kT1nf,),
= ZT; + U + kTlnfod (5.47)

where ?r is the trace operator performing the configurational
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average in the phase space. The other important quantity is the
grand thermodynamic potential {(alsc a functional of o) which |is
defined by

Qipl =.I&rdmg{r,anvext4-Fin{p} ~~;z;tfdl'd(m:)(l",w).

(5.48)
It ig readily confirmed that at the eguilibrium density po, the
above functional correctly gives the equilibrium thermodynamic
potential. It is alsc shown that the eguilibrium thermodynamic
potential is the minimum value of the QIpl:

Qipol ¢ QIpl, (5.49)

for any p#po. This condition is essentially equivalent to the
thermodynamic ineguality Eg.(4.186) specifying the <c¢riterion of
equilibrium. Hence by taking the functional derivative of
Eqg.(5.48), we get

0 = vext{r,w) + uin[po;r,w} - i, {5.50)

where Myn is the intrinsic chemical potential defined by

8F, [p]
wylp:r, 0] = —i0 27 (5.51)
8o

Let ®[pl=F;,lp]1~F;,[p], where F, [p] is the Helmholtz
free energy of the ideal gas as given by

Fijglpl = k?[ drd&uo(r,w}{lntk3p(r,un - 1}, {5.52)

where A3=Zkin is the kinetic part of the partition function due
to rotational as well as translational motions of the molecule,
Ag obvious, $[p] represents the contribution from the
intermclecular interaction.

The hierarchy of correlation functions can be generated by



gsucceggive functional differentiation of ®[p] as follows:

8®[pl
Clp:;r,wl= (1/kT) (5.53)
Sp(r,w),

520101
§p(r,, wN8p(ry, w,)

cEp;rl,wl,rz,w2]==(1fkT)

5%8[p1
Sp(rz,wz)ap(ri,wl)

{5.54)
and s0 oOn.

On using Eg.{(5.53) in Eq.(5.50), +the equilibrium density is
expressed as
Polr, ) = A exp(u/kTIexp{-V (¥, W)/KT+clpo; ¥, w1},

(5.55)
g0 that, ~kTclpo;l,w] gives the additional, effective one-body
potential which self-consgistently determines the equilibrium
dengity. The second member of the correlation functions,
cEﬁo;rIj{al,rz,wzl, ig referred to ag the Ornstein-Zernike
direct correlation function, which satisfies the well-known
Ornstein~Zernike egqguation in combination with +he two~body
density-density correlation function.

Finally, we would like to note the following identity, which
derives readily from the definitions of the direct correlations
functions. Imagine that the density is continuously changed from

that of some reference fluid, pr(r,(a), according to
Pu= Py + alp - pL, (5.56)

in which a4 changes from 0 to 1. Then, starting from the obvious
identity,

1
¢lpl = @[pr]+.[ d¢ip,1/3a da, (5.57)
0

we readily obtain
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¢ipl = @ipr]-*kT.fdrdw[p(r,w)~pr(r,w)l c[pr;r,w]

1 1
0 Q

X{p(rzrwz)“pr(rzr‘dz)} c[paa.;rl,wl,rz,wzl.
(5.58)

5.2.3 BStatistical expressgion for the extrapolation length

A. Grand thermodynamic potential in an corientationally deformed
state

Lbet us consider the equilibria of a semi-infinite nematic
liquid crystal bounded by a rigid and structurelesis wall, and take
the rectangular coordinate with its origin at the point of zero-
adsorption of the wall as shown in Fig.5.10. g in Section 5.1,
the rigidity of the wall allows us to disregard the wall
variables, and to assume that its effect is only to produce an
external potential Vw{z,w) acting on the nematic. We imagine
that the nematic and the wall are both uniform in the plane
parallel to the wall surface (x-y plane). In order to apply the
thermodynamic definition of nematic |
the anchoring strength, 1
Eq.{(4.179b), we need first to

¥4

calculate the grand thermody-

namic potential in the pre-

EARNN

sence of & curvature stress.

Here, we conceive that the

director deformation is solid
brought -about by an orienta-

tional force applied 2 point

well inside the bulk nematic,
and in conformity with the  FIG.5.10. Rigid solid-nematic interface

i under a curvature stress.
thermodynamics, we only con-
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gider the region where such an artificial field is absent, so that
the nematic can be regarded as being deformed only elastically.

In the bulk nematic, the macroscopic alignment of the nematic
should obey the Frank theory of elasgsticity as 1long as the
deviation from the uniform orientation is of sufficiently long
wave-length. Thus, as discussed in Section 4.4.1, the state of
the sgystem must be completely specified by the elastic energy
density £y, which is uniform in the bulk nematic, and the variable
B indicating the mode of deformation. Once fd and B are given,
therefore, the density is uniguely given at any peoint in the
nematic in gquestion as ﬁ(fd,B;r,wu). By denoting the density
in the absence of bulk orientational deformation as po(r,w), we
define

Splfg, B:r,w) = p(£4,B:7, ) - po(F,w). (5.59)

Expansion of Q in powers of 8§ p can be readily carried out
by way of Egq.(5.58). If we regard po a8 the reference density,

then, up to second order in 8§ p, we can set
G{‘Oaa';’l’wl’ rzrwzl = ¢l po; rlrwlr rszzlr

in Eq.(5.58). Furthermore, because { should be minimum at po,
there appears no term linear in &8p. Hence, by making use of
Eqs.(5.48), {5.52), and (5.58), we get

Qipl = Qipol +(kT/Z{[arldwldrzdwzﬁp(fd,ﬁ;rl,wl)

xap(fd,B;rz,wz)Cztpo:rl,wl,rz,sz

(5.60)
where

szﬂoﬁ rlrwlr I"z,wzj =
- C{ﬂo; r}.’wl' rz.rwz}-

{5.61)



B. Frank elagtic energy and the statistical mechanical
formulation of elastic constants

In order to cobtain the expression of the interfacial tensgion,
it is necessary to identify the part which approaches the Frank
elastic energy density fd as 2z goes to infinity. For this

purpose, we utilize the following identity:
Sp(rl,wl)Sp(rz,wz)m
1
i

+§[89(r1,w1)~ Sp(r,w )Hdp(Fy,wy) - 8p(F w1,

(5.62)
where the dependence on fd and B is not written explicitly for
the sake of simplicity. Subgtituting Eq.(5.62) into Eq.(5.60),
we obtain

Qipl = Qlpel

8

+ (KT/2) drldwldrzdwzap(rl,wl)ﬁp(rl,wz)
y
xcz[pq;rl,wl,rz,wzl

;
- (kT/4) drldwldrzdeSQ(rl,wl)Sp(rz,wz)

X{clpo: P, wy, Fo,wyl - clpos ¥y wy, Py, w510
-

+ (kT/4) drldwldrzdwztﬁp(rl,wl) - 8ol wydl
J

XISp(rI,wz)w Sp(rz,wz)]ctpo;ryuh,rz,wzh

{5.63)
where use has been made of the symmetry property of the Ornstein-
Zernike direct correlation function, Eq.(5.54).

It follows from Eq.(5.63) that the thermodynamic potential

can be rewritten in the form,
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Qipl = Qlpol + j £(r) ar, (5.64)

E(r) = £,(F) + £,5(F) + £4(F), (5.65)
where
£,(0) =(kT/Z{[dﬁdwldwzﬁp(r,wl)Sp(r,wz)
XCylpor ¥, wy, F+lU, 0,1,
£,(0) x-(kT/4i[d“dwldw289(r,wl)ﬁﬁ(t+u,w2)
X{clpo: ¥, 0y, F+U, 0,1 - clpe; T+, w,, T, 0,11,
£400) =(ka4{fGwaldw2[89{r,uh) - Sp(r+u,w; )l

X[@p(r,wz)w Sp(r+0,w2)]c{po;r,wl,r+ﬁ,wzh

In the uniformly oriented bulk nematic, it follows from the
translational and rotational symmetry of the nematic phase [49)

that
clpos ¥, 0, , F+U,w,] = clpo;0,w;, U, 0,

C{Do;‘urwer,QZ}

H

clpo;M,wy,0,w,]

cI,oo;r-!-U,wl,l’,wzl, ({5.66)

so that, fz(r) should disappear ag z—>090, Furthermore, in case
the nematic is subjected only to an infinitesimal curvature stress
under constant temperature and chemical potential, the dengity can
be written, upon negligence of terms on the order of fd' in the
following form [cf. Eg.(4.93)1:

PLr,wl = pa(Bh-*w), {(5.67)

where N represents the local "director®” at Pr. Congequently,
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8 » reduces to
Sp(r,w) = ps(h+w)(dN+*w), (5.68)

where the prime over po denotes the differentiation with respect
to N+, Hence, in the bulk nematic, fl(z) can be regarded, to
first order in fd' ag an extra energy needed to homogenecusly
rotate the orientation of a nematic by 6N, As well known, a
uniform rotation of the director is a Goldstone mode [50] in the
nematic phase, namely a mode which does not reguire any external
work for its excitation; hence, fl(f) is also seen to vanish in
the bulk phase. Therefore, fl(r) and fz(t) are non-zeroc only in
the wvicinity of the nematic-wall interface, due respectively to
the break down of the Goldstone degeneracy and of the inversion
symmetry.

As a result of the above property, we are left only with
f3(r) in an infinitegsimally deformed bulk nematic; thus it should
he identified with the Frank elastic energy density. Here, we show
that a rigorcus expression €for the Frank elastic constants
immediately follows from the present formalism in complete
agreement with the result due to Poniewierski and Stecki bhased on
the rather complicated star-integral approach. For a director
configuration which 1is spatially slowly varving about the easy

direction N,, we obtain from Eq.(5.68),

an -
dz

Sp{r,w) - 8§p(r+d, ) ~ —uzpé(he'w)

(5.69)
where we have used the fact that the density is one-dimensionally
varying only along the z-axis, i.e., p{(Vr,w)=p(2,w).

Using Egs.(5.68) and (5.69), f3(f) can be expressed in the
form,

£5(F) =

r

dn. dn
Kij-—i —3 (5.70)
dz dz

DN ] e
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where

Zpa(N 0D psN, w,y)

(kazifdudwldwz u,

= Kji' (5.71)

When na-ne holds, dnh/dz can be approximately written as

an a9 n in® a® n (5.72)
— e e + gin . , .
az az B € gz 2

where 8 and ¢ are the gspherical polar angles of N, and np and

“a are the wunit vectors
perpendicular to ne as shown

n
in Fig.5.11; 1in Section 4.6, I @

they have been referred to as

6, 7
the polar and the azimuthal q{’/ﬁ\N<ue

P n
vectors, respectively. In- ¢
troducing Eq.(5.72) into
Eg.{5.70), we find FIG.5.11. Definition of the unit vectors.

1 ae\? 1 g (402
£4(F) = E(Kij“pinpj)(;;J + E{Kijnai“aj)aln @e(a;_) ,
(5.73)
where the c¢ross term has been eliminated due to the reflection
symmetry in the uniform nematic about the plane including N,. In
order that this egquation becomes identical with the Frank elastic
energy density in an infinitesimal deformation, c¢f. Eqg.(4.63}, it

is necessary and sufficient that

Klsinzee + K30082@

H]

Ki3Mpimp3 e

and (5.74)

- 2 y
Kijnainaj = Kzsin @e + K3cos @e,

where summationg over the subscripts i and 3 are of course
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implied.
As shown in Fig.5.11, M can be decomposed as

U = uehevhuphp-ruana,

and hence we get

22 = uaz sin@ecosee + 4 25in0 . (5.758)

2
cos @e + 2u,u p e

u p

Substituting Eq.(5.75%) into Eqg.{(5.74) by way of Eq.(5.71) and
comparing the coefficients of coszae and sinzee, we finally
obtain

K, ={kT/2{fdudwldwz upzpé(he*wl)pé(he-wz)
K, -(kT/Z{[dwaldwz upzpa(ne-wl)pa(ne-uz)
Kq =(kT/2{[dwa1dwz uezpa(ne-wl)p&(ne-wz)
=(kT/2{[dew1dw2 uezpa(ne'wl)pé(ne'wz)
lea.wZﬂ CIpo;urwlroer}r
(5.76)
where wp and @y dencte a)'hp and u)~ha, respectively; the
term inveolving ueup disappears on symmetry ground. These

equations offer the exact statistical mechanical expressions for
the Frank elastic constants, in complete agreement with the
results given by Poniewvierski and Stecki [37].
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5.2.4 The extrapolation length

We <can now derive the statistical mechanical expression for
the anchoring strength at the rigid-wall nematic interface on the
basis of the thermodynamic thermodynamic definition of the
anchoring strength Eq.(4.179b). As regards a planar interface
between a rigid wall and a single component nematic, the

definition can be readily translated to give

_ ( ar*)
lim
£50 \3f,

where ée is the extrapolation length, which in the present

geometry is given by

[H
[=*]

(5.77)
T, i, B

de = Zg " Zax- (5.78)>

Here, T* is the "boundary tension" with respect to the dividing
surface located at Z4- and Zax represents the point of
extrapolation.

As noted in Section 4.4.3, the boundary tension for the
interface of an orientationally deformed nematic must be written
as

*

rTo=(Q - Q)/A (5.79)

where { is the thermodynamic potential for the hypothetical

a
volume of the nematic which is assumed to be completely bulklike

right up to the dividing surface, i.e.,
Q = Qo + Vfd. (5.80)

Here} Qs is the thermodynamic potential of the hypothetical
volume in the absence of an orientational deformation.

In order to apply the above eguations +to the density
functional formulas derived in the previous section, it 1is

gufficient to recall the fact that ag z—vo, £(r), ag defined in
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Eq.{(5.65), approaches the Frank elastic energy density fd‘ Thus,
it is immediately clear that the boundary tension can be written
asg
X 1 3
TX = Yo + ~ ar (z-z43— £(F3, {5.81)
A oz
where Tg denotes the boundary tension in the absgence of
deformation. On using the fact that fz(r) and fz(vR) are
localized near the interface, Eg.(5.81) can be further
transformed to
X 1 d
T* = TO + - ﬂf{fl(!’) + fz(r) + (2-zd}—~— fs(l')]. (5w82)
A oz
Now it is a straightforward task to derive the desired
expression, by substituting Eq.(5.82) into Eq.(5.77). 1In order
to make the resulting eguation compact, 1let wus introduce a
position-dependent dengity response function #{z,w) to a

curvature stress applied in the bulk nematic:

dplfs Bz, 0l
7(z, 0) = 1im< s ) (5.83)
£,70\9f, T4 B

Then, combining Egs.(5.64), (5.82), and (5.83) with Eg.(5.77),

we obtain

kT
de = gg fdrfdudwldwzﬂ(z,wl)ﬂ(z,wz) |
XColpor ¥, Wy, T+, w,]
KT
-ZX ar dwaldwzﬂ(mhﬁ)ﬂ(ZH%,wz)

x{clpo;r,wl,r+u,wzl-c{po:r+u,w1,r,w23}

kT o J’
+ = 1 dr(z-z )~ |dUdwdw,l7(z,w;) - #(z+tu,, 0,J]
Yy J. a5, 19wWal? 1 z' ¥

Xlz(z,wy) - ﬂ(zﬂu,wz)lcipo:r,wl,r+U,sz
{5.84)
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This equation rigorously expresses the extrapolation length in
terms of the density response function and the Ornstein-Zernike
direct correlation function in the uniform nematic liquid crystal.
Clearly, the first and the second terms are, roughly speaking,
concerned with the broken symmetry in the vicinity of the
interface, and the third with the anomaly of +the curvature
elasticity.

As apparent from its definition, the dengity resgponse
function is the one which vanishes steeply as one moves across the
interface from the nematic ligquid toward the wall. Because ¢of this
gquasi-gingularity near the interface, it is not necessarily a
straightforwvard task to construct a reliable approximation scheme
for #7{z,w) near the interface. So, it becomes sometimes
desirable to transform the above equation into an equivalent form
which involves only a less singular response function except for
the density itself. Thisg c¢an be facilitated by normalizing
#{2,w) by the egquilibrium density in the undeformed state; we
define

7z, w) = 7{z, W)/ pol(z,w). (5.85)

I+t can bhe shown that 7(z,w) is continuous even across an
interface between a hard repulsive wall and a fluid consisting of

hard molecules [51]). Similarly, we define

xcEpO: rlrwlr rzrwz}a
and also (5.86)

Then, repeating the same procedure by which we have derived
Eg.(5.84), we arrive at the same expression as Eg.(5.84) but
with the following exchanges, -7, c->c, and Cz-*ﬁz,

incorporated.
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It is finally worth noting that, in the bulk nematic where
the state of its orientation is specified by the director, the

dengity response function 7(z,w) reduces to

oh+w
7z, w) = ﬁé(ne°w)"5;"f7"2
d
o, . 1/2,,. B ir2,. .
= palig (a){t[2/K3f(86)] i1 g(@e)] (zo z)(hp w)

1/2
1(2/K3B) Y 2[20-2,, -

{Zo-2)]18in® _(B_*wJ},
g(8) e a

(5.87)
which follows directly from Eq.(4.1558); Ze 18 a constant
corresponding to ro. Consequently, 7#(z,w) and 7(z,w) turn out
to be a linear function of z in the bulk nematic for each mode of

deformation specified by 8.

5.2.5 Variational principle

It is possible to prove, based on the minimum property of the
thermodynamic potential, that the extrapolation length satisfies a
gimple wvariational principle when regarded as a functional c¢f the
density response function 7(z,w). ¥or this purpose, we need to
distinguish two types of extrapolation lengths which derive
respectively from the energetigtic and the geometrical
significances of the extrapolation length.

We consider such distribution of nematic molecules at fixed
temperature and chemical potential that correspond, in the region
sufficiently far from the interface, to some eguilibrium state
specified by an appropriate set of fd and B:; that ig, we are to
take up only those density profiles in which a deviation from the
equilibrium one, if any, should be localized near the wall-nematic
interface. Ag pointed out in Section 4.6, the point of

extrapolation hag, on the one hand, a meaning as the point where
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the director, when the bulk profile is extrapolated to the
interface region, approaches clogsest to the easy axis ne {based
on the measure of length as defined in Eq.(4.156)]. We shall
refer tao the extrapolation length in this sense as the
"geometrical” extrapolation length, and denote it as de(G).

on the other hand, as embodied by the thermodynamic
definition of the extrapolation length itself, we can interpret it
ag giving a distance over which the bulk nematic should be
extrapolated so as to regard the increase in the interfacial
tengion due to the curvature stress as entirely a bulk
contribution {see Sections 4.5.3 and 4.5.41. Also writing the

X

boundary tension in nonequilibrium case asg Y S this

"energetistic” extrapolation length de(E) is thus given by
X
de(E) = A7y /fd, {5.88)

where ZLT* denotes the orientational part of +the boundary

tension. In egquilibrium, we have of course
de(E) = dc(G). (5.89)

Let #(z,w) be an arbitrary (not necessarily equilibrium)
dengity response function which is constrained to approach the
eﬁuilibrium form, Eq.{(5.87), as 2z-»c0, And, we shall regard the
extrapolation 1length d, as given by Eq.(5.84) as a functional of
n{z,w). As clear from the course of derivation, de[”] is just
the energetistic extrapolation length de(E) associated with the
change in density,

7(z2,w). {(5.90)

We begin with the consideration of the minimum condition of
the thermodynamic potential for a total system including both the
system in guestion and its environment [see Fig.121]:

Qt = D ¢ Qenv‘ {5.91)
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We assume that the director is fixed at the boundary of the
environment, which 1ig itself far away from the boundary between

the environment and the system located at 2 Then, under this

a
condition, Qt should assume

3

a minimum value for an equi-
librium density as shown in
Eq.(5.49). Suppose a devia~
tion from the equilibrium
dengity at fixed T, u, fd’

and B, yet associated with

the wvariations in ﬁe(G) and "
G
d,(E). In the bulk nematic ——

(especially in the nematic  r1¢.5.12. Virtual translation of the
equilibrium director profile. The
director is fixed at a far off point P.
d, to &e(G) amounts to trans- The extrapolation length changes from

¢ . . ] the equilibrium value d, to Qdg(G).
late the equilibrium director

environment), the change from

profile from N(z)} to n[z+ée(G)-de}; go that, just as in
Eq.(4.186), we obtain

5§Q = - A __ 9% 8n.(z)
env B(Gni/dz) . i*“a
a
~2Afd[de - de(G}}, (5.92)

where de repregsents the equilibrium extrapoliation length. From

Egs.{5.80) and {5.81), we get

5Q = Af4ld,(E) - dgl. (5.93)

e

Thus, in terms of Egs.(5.92) and (5.93), Eg.(5.49) can be
translated to

0 < 8$2t = Afqld, + d (E) - 24,(G)],

which yields

dg > 2d,(G) - d (E). (5.94)
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The equality holds in eguilibrium, in which de(G)=de(E)mde. This
result shows that by using a trial function for #(z,w), we can
at least set a lower bound for the extrapolation length; in other
words, the upper bound for the anchoring strength.

Let us briefly illustrate how this variational principle
works, by means of a Rapini-Papoular type model of the nematic
interface. Though it is not a statistical mechanical model, it
would serve as a good caricature of the interface for the purpose
of iliustration. We imagine that the nematic is completely
bulklike right up to the interface at z=0, and that, by taking the
dividing surface at z=0, the boundary (interfacial) tension r* is
written as a function of the director at the interface; for
gimplicity, we consider the one-dimensional case in which only the
polar angle of the director ©® varies over space. In terms of the

anchoring energy Ea, therefore, T* can be written as
1 2
Ar = EEa(G"Qe) . (5.95)

Furthermore, we have

] @e = x[2fd/K3f{®e)] de(G). (5.96)
The energetistic extrapclation is thus given by

- 2

de(E) = de(G) {Ea/Kaf{ee)]. (5.97)

Using the above in Eg.(5.94), we f£ind
2
de > 263(6) - de(G) {Ea/K3f(9e)}. (5.,98)

The right-hand side assumes the maximum value K3f(®e}/Ea, when

d,(G) = d (E) = K3f(0O )/E,. (5.99)

This is just the value of the extrapolation length that we expect
for the Rapini~Papoular model [see Eg.(4.167a)l.
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5.2.6 Variaticnal calculation of the extrapolation length

Equation (5.84) has revealed that a first principle
calculation of the anchoring strength requires the knowledge on
the Ornstein-Zernike direct correlation function and the densgity
response function both in the bulk and in the inhomogeneous region
near the nematic-wall interface. However, the calculation of such
functions in an inhomogeneous liquid is still far from a settled
problem, and in general needs an extensive computer simulations
and/or some approximate formulas. As emphasized previously,
the present purpose of microscopically treating the nematic
interface is not to perform such microscopic calculations, but to
found a conceptual basis for the phenomencleogy of the nematic
interface. Indeed, on the basis of the variaticnal principle
derived above, we can gualitatively figure out the principal
factors affecting the anchoring strength in some detail. The
microscopic approaches will be pursued elsewvhere.

For simplicity, let us consider the case of a purely polar
anchorage [B=0]. In wview of Eq.(5.87), we adopt a simplest
possible trial functicon for the normalized density response

function as
N(z,0) = X (WI[2/KLE(O ) 11/2[2~24+d,(6)], (5.100)

where

Xe(W) = (R s )p5(N > w)/polN *w).

Substituting Eq.(5.100) into Eq.(5.84) with the dividing surface
located at zd=0 (the point of zero-adsorption of the scolid phase),
we find that the energetistic extrapolation length de(E) can now

be written in the following form:
- 2
de(E) = [B2 + ZBlde(G} + Bode(G) ,
(5.101)



where B's, J's, and Mo are the constants independent of de(G),

which are specifically given by

By 1
kT

B, = '; dr Jdldw,dw, | z | x (W) x (wy)

Bz 22 xeziﬁo;rrwlr r"'urwz]r

JO - 1

Jz z "'zuz

X{EEpo;r,wl,r+u,w2]-E{po;r+0,w1,r,wzih

o ar 9 fdild d (W) xalwy)
Z Y WaX w X )
23 32 1902 X el W)X et Wy

<
Lo
u

XEEQO;r,wl,r*U,wz}.

(6.102)
in comparison with Eq.(5.84), it is clear that B's and J's are
respectively connected with the break-down of the Goldstone
degeneracy and of the inversion symmetry in the interfacial
inhomogeneous region. Under the present approximation, however,
it should be noted that J's vanish identically; as clear from
Eqg.{(5.84), the contribution of this term disappear, whenever
#(2,w) can be factorized as ﬂl(z)ﬂz(w) or given by a sum of
this type of functions,

In order next to appreciate the physical meaning of MO in

some detail, we rewrite the abhove eguation as follows:

kT d
= e dz 2z ~—~ dxdydMUdw, dw,xy (WyYxy (W,)
Q 2A 9z Jﬂ 1 Z™e 1 e 1
XE[po;r,wl,r+u,m2L
_ o)



In view of Egs.(5.74) and {(5.76), it is clear that

lim K gelz) = K3f(@a), (5.104)

20O
g0 that, it appears reasonable to call Keff(z) the effective Frank
elagtic constant at the point z, as a generalization of the bulk
constant into the inhomogeneous region. According to Eqg.(5.103),

Ho ig further transformed to
z, .
HO . f Keff(Z) &z - zaK:sf(@e)- {5-105)
-0

So, M, can be interpreted as the surface excess of the Frank
elastic constant relative to the dividing surface at zdzo. The
fact that K,ss has a correct property as an elastic constant can
be confirmed, qualitatively at least, by applying the gradient
expansion approximation with regpect to the density or the
(normalized) density response function in Eg.(5.53) or in
Eq.(5.84).

¥hen it can Dbe assumed that the inhomogeneocus region is
localized virtually within a region having a thickness negligibly
small compared with d,(G), it follows from Eq.(5.103) that B, and
82 can be negiected compared with Bo in Eq.(5.101} to give

i, 2
dg(E) = [Bgd (G)% + MG1/K4£(0,). (5.106)

Then, usging Eg.{(5.106) in Eg.(5.98) and maximizing with respect
to de(G}, we obtain

K.f(© ) M
. 3 e . 0 (5.107)
Bg K4£(8,),
which, upon the use of Eg.(5.1058), reduces to
Ko£(8 ) i K. celz)
o > —I—E— f {1 - —2££ "7 1 42, (5.108)
B, 00 KL£(8 )
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Besides negligence of B, and B,, this is a rigorous
inequality for the eguilibrium extrapclation length. Although it
ig beyond the scope of the present argument to give a quantitative
estimate for each terms appearing in the above, we can draw a few
important <{gualitative) consegquences from this result on the

nature of the anchoring of nematicsg at their interfaces:

{1) The extrapolation length is comprised of two independent
contributiong resulting from the broken symmetry and the direct

interaction across the nematic-wall interface (B and J terms)

region (structural effect);

(2) When the orientational restoring force, represented by B
and J in the above, becomes small, the anchoring strength
should weaken irrespective of the elastic property of the

interfacial region of the nematic;

(3) Conversely, as the interfacial region grows, where the
curvature elagticity is relatively weaker than in the bulk
nematic, the extrapoclation length can be arbitrarily large,
independent of the strength of the orientational resgtoring

force.

Note that the first of the above shows close correspondence with
the results in Section 5.1 as regards the factors determining the
interfacial tension of a wall-undeformed nematic. Finally, it
must be pointed out that by using a more sophisticated +trial
functions, the estimate for the extrapolation can be readily
improved. So, the present formula for the extrapolation length,
armed with the variational property, seems toe be especially suited

for simulation studies of the anchoring processes.
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5.3 The Landau-de Gennes theory of the nematic interface
5.3.1 Background

The Landau-de Gennes theory of the nematic-isotropic
transition has been described in Chapter 2. This 1is a
phenomenological theory which consists in expanding the free
energy in powers of the orientational order parameter. It is
therefore clear that, when properly supplemented with a surface
term, it can be readily applied to interfacial phencomena as well.
As a theory to describe the structure of an interface, it is
esgentially similar to the van der Waals theory, or gradient
expansiqn theory, of the interface of simple liquids, which are
known to provide gqualitatively (and often quantitatively) good
account of the interfacial properties of ordinary liguid systems
{52}, The only difference between the Landau-de Gennes and the van
der Waals theories is the order parameter with which the free
energy is expanded. Both of These theories stand out as a good
example of few existing theories that can yield meaningful
information on the structure of the interface without detailed
knowledge on the intermolecular interaction supporting the
interface.

The Landau-de Gennes and other related theories of the
nematic-wall, nematic-vapor, and nematic-isctropic interfaces have
been explored by a number of workers [1,53-67]. The advantage of
the Landau-de Gennes type theory is that it automatically alléws
us to take account of, in a phenomenological manner though, the
gpatial inhomogeneity of the orientational structure near the
interface and the direct interaction between a nematic liquid and
a solid or fluid. As emphasgized in Section 5.1, both of them are
expected to play an important role in determining the macroscopic
orientational property of the nematic interface; and, at present,

there isg no molecular theory which can properly take care of the



former factor, in particular, In view of the success of van der
Waals type theories in the case of ordinary fluid interface, it
appears reascnable to expect that the Landau-de Gennes theory
bagsed on the expansgion in terms of the order parameter and its
gpatial derivatives will produce a correct description,
qualitatively at least, of the nematic liguid c¢rystal interface.
In this section, we will formulate the model of a nematic
interface 1in the Landau-de Gennes type theory, following the
treatment due to Sluckin and Poniewierski [1,65,66]. And in the
following three sections, we shall apply the theory to some
gspecific orientational phenomena, with which we will concern
ourselves in the experimental chapters. Since the details of the
theoretical analyses are well documented in the literature, the
description is limited to such an extent as to facilitate an
intuitive appreciation of the physical content of the phenomena.
Those who are interested in details are encouraged to consult

original articles.

$.3.2 Desgcription of the model

Let us congider a semi-infinite nematic liquid crystal in
contact with a solid wall, whose surface is located at z=0 as in
the previous section. The fundamental postulate of the Landau-
de Gennes type model is that the thermodynamic potential £ of the
nematic be expressed as a functional of the orientational tensor
order parameter (Qij). In case the system is uniform in the plane
parallel to the interface, in particular, the thermodynamic

potential is written as

O
Q{Qij(z)}/As = Jﬁ U[Qij(z)l + og[inj/&z} dz + gs(Q°ij)'
0 (5.109)
where the area of the dencted by hs' G[Qijl is the free energy
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density of a uniform nematic with the order parameter Qiﬂ(z), 43

g
the additional <contribution f£from the gpatial variation o¢f the

order parameter, and Gs(oaij) is the solid~-nematic interaction
term which is also regarded as a function of the order parameter
at the interface Q°ij=°ij(°)' The egquilibrium structure of the
nematic interface is given by Qij(z) which minimizes the
thermodynamic potential Q. In comparison with the exact formula
derived in Section 5.1, we can gee that the first and the second
terms in the above are directly connected with T*(i) and ?*(2)
in Eq.(5.20), respectively.

As mentioned in Chapter 2, the tensor order parameter can be

given, for a uniaxial nematic, by

1

where n; is the i-th component of the director, and @ the scalar

order parameter. In the ordinary form of the Landau-de Gennes
theory [53~55], ¢ and 04 are written respectively as
1 1 1
¢ = 0o + - 3Q% - ; BQ® + y co4, (5.111)

and

]
]

1 1
g3 L;(9,0;47(9,9;4) ¢+ 2 L(3,0;,)(3,0;,),
{5.112)
where 0o 1is the isotropic contribution dependent only on the
temperature, and 82 denotes the differentiation with respect to

z. Usually, A is assumed to depend linearly on temperature, i.e.,
*x
A= a(T -~ T), (5.113)

with ?* being the supercocling limit of the isotropic phase.
Here, a, B, and C are regarded as temperature-independent
constantg, and as mentioned in Chapter 2, ¢ is a function having

double minima at Q=0 and Qb (at least, sufficiently near the



clearing point TC}. Ly and L2 are the elastic constants for the
gspatial wvariation of the order parameter. In terms of Q and N,
Eq.(5.111) amounts to a rather complicated expression in which
derivatives of Q and N are coupled with each other, unless LZ#O.

When Lzzo, however, Eq.(5.112) reduces to a simple decoupled form,

3 Ao 9 5

where
Hg(M,an/dz) = (divm? + (n-roth)? + (NXroth)?,

(5.114)
Sheng [56,57]1, Tarczon and Mivano [60C)], and Allender ({61] wused
thig simplified form (at N=congt.) in combination with Eq.(5.112)
for studying the orientational phase transition at a wall-nematic
interface. Poniewierski and Sluckin [65,66], however, adopted a
Majer~Saupe Free energy density in stead of Egq.(5.111>,
supplemented alsoc with Eg.(5.114) with the constant director.
Below we shall use the fourth-order polynomial expregsion for o
with B and C being temperature-independent constant as in
Egq.(5.111), but do not neacegsarily stick to the temperature

dependence of A as sumed in Eq.(5.113) in accordance with

i
it

de Gennes' original treatment [53].
To fully specify the model, it is £finally necessary to give

an expression for the solid-nematic interaction term Og-

Following Poniewierski and Sluckin [1,65,66), we expand T g with
respect to Qaij up to quadratic order. But, here, we use the unit

vector “e along the easy axis [58]), instead of +the interface

normal they have used:
O0g = 0go = GQojyNgyNgy *+ 43500540044
2
+ 4bsQ°ijnejQ°iknek + 4CS(Q°ijneinej} ) (5.115)

where G, ag., bs, and Cg are the coefficients of expansion. Upon
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introduction of (5.110), Eqg.(5.115) reduces to

Gy = g0 + WolQo) + Wy(QodI1-(N N )%1/2
* Wy(Qo)I1-(n e nH212/4
(5.116)
~GQo + (ag+dbg+dc,)Qo? = -GQo + UQoZ/2,

where
Wolfe)

W,(00) = 36Qo - B(b +4c )Q0% = G060 + U,Q02/2,

V4(Q0) = 36c,00% = U,00%/2.

In the absence of W4, Eg.{(5.116) just gives the Rapini-Papoular
form of the interfacial tension, which hag also be given by
Parsons ([87] for the free surface of nematics.

Wo(Qo) is a term which is dependent only on the surface order
parameter Qo. Since, when the director is along the easy axis, the
second and the third terms disappear in Eg.{5.116), the surface
property of an undeformed nematic is solely expressed by the form
Vo. According to Sluckin and Poniewierski {671, the second ternm
of Wo, which involves Us, 1is related to the reduction of the
orientational mean field near the interface due to the smaller
number of neighboring molecules near the interface than in the
bulk phase; it can therefore be regarded as corresponding to the
relaxation term T*(I) in Eq.(5.19). Accordingly, we may conceive
that this term is expressing the "disordering effect" of the
interface, s8¢ that U. may approximately be regarded as a positive
constant. The first term of W., on the other hand, is a
contribution of an external interfacial torgue field, including
the solid-nematic interaction, which tends to orient the nematics
along the easy axis [58,63,67]. So, it is essentially expressing
an "ordering effect” of the interface, implying a positive g.

Furthermore, in order for the eagy axis to be a stable
direction for the director, we should have W,>0. In the sense

that the easy axis is incorporated in the expression of 0g from



the very beginning, the present model is more phenomenology-
oriented than the original Poniewierski~Sluckin model.

Here, a word of caution is in order concerning the validity
of Egs.{5.1158) and (5.118). As pointed out by Sluckin and
Poniewierski (11, when n_ does not coincide with the interface
normal, there is always a symmetry breaking over the interface
between the direction along the projection of ne and that normal
to it. As a result, very close to the interface, one should find
a "biaxial"” ordering of nematic molecules {asg in smectic C phase)},.
However, in view of the fact that such a biaxial order is
essentially short-ranged, and also that the representation of the
thermodynamic potential in terms of the tensor order parameter
cease +to be valid very close to the surface (even when Qij is
uniaxial or biaxial), it seems reasonable to expect that at least
to the present level of approximation, the expression Egq.(5.116)
remaing to be wvalid.

Before going into the specific analysis of this model, it is
convenient to transform the above eguationg intce dimensicnless
forms. Note that the bulk nematic-isotropic transition occurs
when

g(Q.) = ac(Q.1/4Q = 0, (5.117)
where Qc is the order parameter of the nematic phasgse at the point
of transition. Then, from Egs.{5.111) and {(5.114), we obtain

Qc = 2B/3C, (5.118)
and various other guantities at the transition point Tc:

—and — 172 - 172, 3
A(Tc)—ZB /8C, sc—EBLIIZA(Tc)I . and Tni‘(BCLi) Qc /12,
(5.119)
where Sc is the coherence length ¢f the order parameter at Tc’

and igs the nematic~isotropic interfacial tension within the

Tni
context of the present model ([53,54]. in terms of those
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parameters, we now define the normalized variables as follows:

q = /0., (5.120)
g =2/, (5.121)
7 (T) = 9A(TIC/(2B?). (5.122a)

In particular, if a linear temperature dependence as in Eg.(5.113)

is assumed for A(T), #7{(T) can be rewritten as

T - 7"
DAT) = e (5.122b)
To - T

In order to simplify the solid-nematic interaction term, we

introduce a dimengionless solid-nematic potential via
Og = as/(GTni), (5.123)

and accordingly normalize the coefficients appearing in Eg.(5.116)
as
g = GO,/ (67 ;). Uo = UeQ.?/(67,;), etc. (5.124)

For example, when nmne, we obtain

M&S(QQ) = o~ gQo + UQQQZ/Z.

IIsing these new variables, we can finally express the

thermodynamic potential as

00 dq 2
" 2 _ 3 4 o=
Q. /(37 By = ‘f [7(Da? - 2¢ + g +(d§)
0
+ 3q%H (N, dN/dE)1dE + 2T 4(q0),
(5.125)
where Qa is the anisotropic part of the thermodynamic potential,
remaining after substraction of the isotropic contribution duse to

To.



5.4 Wall-induced pretransitional birefringence: Orientational

wetting transition
§.4.1 Variation of the order parameter near the interface

Let us first consider how the orientational order of a
nematic should be (locally) modified, when put into contact with a
solid wall. It is naturally expected that if the solid wall is
such that a nematic molecule feels a stronger orienting field in
the vicinity of the solid than in the bulk phase, the
orientational order may be enhanced near the wall [Fig.5.13(a)].
Conversely, if the solid acts in such a way as to reduce the mean
field for the nematic molecule, we expect that the orientational
order should be deteriorated near the wall ([Fig.5.13(b)1]. We
shall refer to the former case as the "surface-induced ordering”
and the latter as the "surface-induced disordering.” The term
"Wall-induced pretransitional birefringence” derives from the fact
that this phenomenon was first observed by Mivano [68,69] through
a measurement of locally induced birefringence near the wall at

temperaturesg above the clearing point.

ity
i Iy 1\
IR
! \\I‘
s
FIG.5.13. Surface-induced
ordering (a) and disordering(b)
transitions in nematic liguid
(a)  ordering (b) disordering crystals.

Once the order parameter at the interface (z=0) is given, the

calculation o©f the order parameter profile can be readily carried
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out by applying the variational calculus ¢to Eq.(5.125). We
assume that the director is spatially invariant; then, from
Eg.(5.125), the Euler~Lagrange equation for the order parameter
becomes

a%q & _

&z dg

where _
og(g)

(0(Q)-06)/(37 ;) = 7(Da? - 247 + ¢f,

together with the boundary condition at the sclid surface

dq

4
w—— T, at £=0. (5.1273
af dqg =

By integrating Eg.(5.126) once with the condition at
infinity, i.e., dg/4{~»0, we obtain

aq ’ T(g) T ( ) {(5.128)
- = g - FLq , .
(d: b

where dy is the normalized equilibrium order parameter in the bulk
phase; at T>T., q,=0, and at T<T,, q,#0. More specifically, q, is
given by

qy = (3 + 19 - 872(1) 1Y/ 2)/4, for  T<T,.
(5.129)
Then, we find

T() - Tlay) = (q - q)%q% + (qp-1)(2q+qy )],  for T,

= 7(T)q? - 2¢3 + g4, for T>T,.
(5.130)
Inverting Eq.(5.128), we can write the profile of the order

parameter as an implicit function of ¢ as

max{go,q)
g = Jﬂ [5(q) ~ o(g171/2 aq, (5.131)
min{go,q)
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where qo is the order parameter at the solid surface ({=0), which
much be determined via the boundary condition Egq.(5.127). An
important quantity, which is experimentally measurable, is the

surface excess of the order parameter defined by

OO
0

This is directly connected with the surface excess birefringence
at the so0lid surface.

Using Eq.(5.130) in E¢gs.{(5.131) and (5.132), we can readily

write down the profile of the order parameter as follows:
(i) 'I‘(Tc {nematic bulk~phase),

(4qb2 h 3Qb)
2qy - 1 +(ay-1>1/2sinhl+ £ (aqp2-3q,0 72 + ¢ 1
(5.133)

where the positive sign should be adopted before ¢ when qo<qb,

q = qb -

and the negative sign when qo>qb, and

2(qb*q°)(qb*1)+qo

I -]
& n = sinh

(qb~q¢)(qb*1)1/2'
(ii) T>'£'c {isotropic bulk-~-phase),
q = ! (5.134)
1+ (ﬂ~1)1fzsinh£ﬂ1/25+¢i], ]
where
R | T 9
$. = sinh .
: qo(ﬂ“l)l/z

At the nematic-isotropic transition point Tc’ in particular, these

equations can ke reduced to
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{i') nematic bulk-phase,

1 -~ qo
q = 1 - , (5.135)
1 - go *+ Qoexp{

(ii'} isotropic bulk-phase,

To
do - (1-go)exp&

q = (5.136)

5.4.2 Orientational wetting transgition in the isotropic phase

In Fig.5.14 shown are the profiles of the order parameter
calculated at various temperatures above T. Focusing on the
features that emerge as Tc is approached, we can distinguish two
distinct behaviors which occur depending on whether the surface
order parameter is larger or smaller than Q., 1i.e. 4go>l or <1.
Namely, when gqo remaing gsmaller than unity, the order parameter
invariably decays over the length on the order of the coherence
length, i.e., £~1. However, when geo>l, we observe that the
orientationally ordered interfacial region growg indefinitely,
regulting in a nematic like layver with a macrogcopic thickness;

the g80lid surface is wetted by the nematic ligquid.

q

7-1= 0.0001
FIG.5.14. Profiles of

the order parameter at
various temperatures

above T,. T} is a variable
specifying the temperature.
The surface order

parameters are g,=i.l and
0.5.

order parameter

08

0 1 2 3 4 5 6 T 8 9
distance £=Z/L



In analogy with the wetting transition at the interfaces of
ordinary 1liquids [70,71], it may be called the ‘"orientational
wetting transition™ [11. This is one of few examples of the
surface~induced c¢ritical phenomena associated with a first-order
bulk +transition. Lipowsky {72] also called this type of critical
phenomenon the "interface depinning transition" in the sense that
the interface between the ordered and the disordered region is
liberated from the boundary as the transition temperature |is
approached.

As shown above, in a semi-infinite sample, the thickness of
the ordered layer diverges (as long as geo>l) as the temperature
is decreased toward T.. In real samples of finite dimension, it
ig obviously impossible to occur, and more over, because of the
gshift of the bulk coexistence temperature, there appears an upper
bound for the thickness of the surface ordered layer. Lipowsky
[72] argued that the upper bound is given, for a sample with a
thickness d, by 1In{d), and hence the actually observable thickness
of the ordered laver is expected not to be very large even for a
macroscopically thick samples.

The surface excess of the order parameter can aiso be
obtained by substituting Eqg.{(5.134) into Eg.{(5.132):

I ~ go = {{q¢-1)2+ﬂ—1]1/2
173 . (5.137)
1 -7

Pord = Qcfc In

Since the birefringence An of a nematic ligquid is approximately
proportional to the order parameter, the surface excess rord can
be identified, except for a constant factor, with the surface
excess birefringence. Especially, when the bulk phase isg in the
igotropic state, the absence of birefringence in the bulk phase
allows us to directly measure the surface excess birefringence.
This is indeed the principle of the Wall~induced pretransitional

birefringence measurement originated by Miyano [60,68,69].
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The gquantity which is measurable in real experiments is the

optical phase retardation R defined by

[+
27N '
R = = An(z) dz, (5.138)
A Jo

where A is the wavelength of the probe monochromatic light, and
An(z) denotes the local birefringence in the nematic. Therefore,
writing Rc=Anc§c, with Anc being the birefringence at Tc' we

obtain the following relation

d _

Eﬂ
x| m

(5.139)

Lo
Iy

c*cC c

Thus, if the retardation R is measured for a known 7, the surface
order parameter can in principle be directly evaluated from
Eq.(5.137):

9o = 1 - cosh(R/R) + 71/2sinh(R/R,). (5.140)

When R/R. is large, however, this equation becomes quite sensitve
to an error in R/Rc, hecause go is given by a difference between
two large guantities, Consequently, in case the orientational
wetting +transition does occur, the value of the surface order
parameter determined from the data of thé’ wall-induced
pretransitional birefringence ghould be subjected to an
even more significant error as the temperature approaches T,,.

FIG.5.15. Tempefatufé depen—
dence of the reduced wall-
induced birefringence for
various surface order
parameters, For g >l, the
birefringence logarithmically
diverges toward T, (nN=1).

5 -~ 59



In Pig.5.15, R/Rc is shown as a function of 7-1 (which goes to O
as Tm*Tc) with the agsumption of constant geo. As apparent from
Eq.{5.132), when gorl, rord
logarithmically with 7-1, In particular, if #-1 is8 1linearly

and hence R should diverge

dependent on temperature as in a common Landau~de Gennes model, we
find (in the vicinity of Tc)

R/Rc ~ 1n{(T - Tc) + o, when gobl, (5.141)

where ¢ is a function only of go. This equation indicates that
for a sufficiently large surface order parameter, the retardation
diverges logarithmically as the temperature approaches the
clearing point. This is an immediate conseguence of the
logarithmic divergence of the thickness of the ordered layer for
go2l. ‘

On the other hand, 1if go<<1 holds, Eg.(5.137) can be

approximated to give

Qo
IN‘cuf:::i ~ Q€ ;T?z

Under the same condition as above, we gee that

R/R, ~ Qo(T -15)1/2/(p-1%)1/2, when go¢<<l.  (5.142)

5.4.3 Orientational wetting transition in the nematic phase

The case in which the bulk phase is in the nematic state can
be treated in much the same manner as above. The order parameter
profile for this case is shown in Fig.5.16. In this case,
however, an orientational wetting transition occurs when go{0, for
which a "disordered" surface layer is observed to completely wet
the solid wall as T, is approached from below. This is the

surface-induced disordering transition in Lipowsky's terminology.
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Gy = 1.1
: =1.01 =100}

FIG.5.16. Spatial variation of
the order parameter in the
nematic phase for various

bulk order parameters. When qOmO
q5=0, the disordered interface
layer grows indefinitely as

7. is approached from below.

order parametfer 9

C

distance (= Z/¢&,

When the surface order parameter is larger than 0, the
inhomogeneity of the order parameter is more of less restricted
within the region away from the sciid surface by &c or so. This
situation is essentially identical with what we have geen above Te
when g. is below 9p- In contrast to the case of wall-induced
pretrangitional birefringence, however, the surface-induced order
or disorder in the nematic phase has as yet been unambiguously
cbhserved in experiment due primarily to the hazard resulting from
the large optical anisotropy in the bulk nematic phase. So, we
will not present the formula for the surface excess order
parameter.

Nevertheless, 1t should be pointed out that the anomaly of
surface order in the nematic phase does manifest itself, in an
indirect manner though, in those orientaional phenomena which we

will treat later sections.



5.4.4 Surface order parameter

So far, we have tacitly assumed that the order parameter at
the sgolid-nematic interface is given in advance. In reality,
however, we must determine it so as to satisfy the boundary
condition Eq.(5.127). By using Egs.(5.124), (5.128), and (5.130),

we can rewrite the boundary condition in the form

(qp - 9o)[qo? + (gu-1)(2qe+qy) 12, (TST).

™ g * Uolo =
~gol 7(T) - 290 + ao211/2, (T2T ).
(5.143)

where we have used the fact that when qo>qb, dg/dZ must be
negative, and when Qolqy . it should be positive. To illustrate
the physical content of the above equation, it is convenient to

utilize a graphical representation as shown in Fig.5.17.

%12 T dqo) TLT,

\‘ a3 fo TaTe
g,

"g + UQQQ

o
3]
i
(=]
i
1

| ; ' W
- \ ]

~ g +Upqg

{a)

- 1-0.02

(b) H-1=02

FIG.5.17. Graphical representation of the boundary
condition Eq.{5.143): (a) TLTy; (b} T2T..
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In view of the aforementioned interpretations of g and us
terms in Wo as expressing, respectively, the ordering and the

disordering effects of the interface, we always assume here that
g > 0, and e > 0. (5.144)

Under this condition, it follows from Fig.5.17(a) that, when the
bulk phase is in the nematic state, there exists a unigque solution
for the surface corder parameter. And we see that go increases as ¢
increases and/or uo decreasesg, Jjust as intuitively <clear £rom
their physical meaning. For constant g and ue., the surface order
parameter continuously decreasgses with the increase in temperature.

When the bulk phase i8 in the isotropic state, however, the
behavior of the surface order parameter is more complicated, and
shows a rich variety of phenomena as discussed by Sheng (63}, and
Sluckin and Poniewierski [1]. At a temperature 1<{7<9/4, there may
be one or three golutions depending on the magnitudes of g and u..
In particular, for a narrow range of g and uo, the surface order
parameter jumps discontinuously on cooling from a small to a large
value at a temperature slightly above T_,. This is an interfacial
orientational transition called the "prewetting transition."” So
far, however, no experimental observation of this transition has
been reported, due probably to the difficulty to contreol in actual
gsystems for g and us to lie in that narrow range as reguired by
the theoretical prediction.

When g is sufficiently large or small and/or ue is large
enough, Eq.{(5.143) allows only one solution. The surface order
parameter, this time, continuously decreases with temperature at
constant g and uo. Obviously, if the ordering component g 1is
absent, the surface order parameter always remains to be zero.

Anyway, the measurement of wall-induced pretransitional
birefringence gives rise to the surface order parameter go(obs)

and hence specifies a single relationship between g and u., i.e.,
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gofobsl=qgo(g,uo). If we have independent information on these
phenomenological parameters, we can in general determine g and ue..
In the next gsection, we shall more specifically consider how the
surface order parameter is affected by g and ue in relation to the
contact angle at the nematic-isotropic-solid line of contact, by
focusing the attention on the behavior at the clearing

temperature,
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5.5 Contact-angle phenomena at the clearing point [73]

As mentioned in Section 5.1, the contact angle at the line
where the nematic, isotropic, and go0lid phases meet ig far more
sensitve to the orientational contributions in the relevant
interfacial tensions in comparison with the familiar contact angile
that one obtaing in nematic-vapor-solid systeme. In this section,
we shall investigate more sgpecifically within the framework of
the Landau~de Gennes theory how the contact angle is related ¢to
the anisotropic part of the wall-nematic interaction, and is also
connected with the orientational ordering at the interface.

In order to obtain an o - o,
explicit expression for the ‘ ié:cx
contact angle of a nematic . .
drop [see Fig.5.18]1, we need ESO’NMNC };§

to find the interfacial ten-

nematic
sions of the nematic and }gi :
isotropic phases relative to AT T
the golid wall at the

FI1G.5.18,. Contact ahgle of a
clearing temperature. Since nematic drop at a solid-

- isotropic interface,

the free energy density o(q)
vanigheg in the bulk phase, where qb=0 or 1 at Tc’ the interfacial
tension becomes identical with Qalks as given in Eg.{(5.125).

Then, using Eq.(5.128), we obtain

max(Qo,qb)
TI3T ) = f 200 (q) - G(a)112 ag + 25 (g0,
min{Qo,qb) (5.145)
which applies to both nematic and isotropic phases. Subsgtituting
Eg.(5.130) at TC, we can readily express 7 as a function of the
surface and bulk order parameters:

(i) nematic bulk-phase (go20),

2 3

Tgn(¥0) = 7,301 = 300 + 2q0° - 690 + 3uogo?l, (5.146)
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{ii) isotropic bulk-phase,

(a) go £ 1.,

Tsi(q") = ?’nif3‘I02 - 2<;Io3 - Bgge *+ 3l1c>€£021, (8.147a)
(b) Qo Z lr
7Tg3(d0) = 7,302 = 390% + 240° - 6990 + 3ueqo?l,  (5.147b)

where we have ignored the iscotropic contribution from Og, since
it does not influence the final result on the contact angle.

For each phase, the equilibrium value of the interfacial
tension can be obtained by minimizing the above expression with
regpect to the surface order parameter. This condition of
equilibrium reduces, as it must be, to Eg.(5.143). As noted in
the former section, when the bulk phase ig the nematic 1liguid,
there is only one surface order parameter 9oy for each set of g>0
and us»0:

Qo = {1 - to + [(1-u0)2 + 4g11/%y/2. (5.148)

¥hen the bulk is in the isotropic state, however, the f£following
three cases are possible: (1) when 2g9<us, there is one stable

1/2<1+u°(29+1, there are a low

solution qoi(L)sl; (2) when 2g
order-parameter and a high order-parameter (metastable) solutions,
qoi(L)gl and qoi(H)zl, along with one unstable solution; (3) when

1+uo<2g1/2, there is again only one stable solution qai(H)zlz

Qoy (L) = {1 + uo - [(1+uo)? - 4g11/2%)/2,

and (5.149)
QOi(H) QOn-

The first case denotes the regime in which the disordering effect
due Lo uo term is overwvhelming the ordering effect of g. In the
second case, both effects are comparable. And, in the third case,
the interface is strongly ordering. Therefore, the surface order

parameter tends to increase as the condition of +the interface
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changes from the first toward the third. For example, 1if the
ordering field is absent, i.e., g=0, we have go;=0 and q¢n<1; and,
if the disordering field is absent, i.e., Uo=0, we have qoi>0 and
Qop>l.
In the first case, we gsee from Fig.5.17 and Egs.(5.148) and
(5.149) that
qoi(L) $ %o € 1. {(5.150)

And, it is also c¢lear that for fixed Gop {or go), we can chose
appropriate g and us so that qoi(L) {(or Qon) can take an arbitrary
value asg long as it satisfies the above inequality. Furthermore,
it should be noted that, regardless of the values of g and uo,
qci(L) is always smaller then unity. Now, combining Egs.(5.146)
and (5.147a) with Young's equation, i.e., Tgi=T gnt M picosa, we
can express the contact angle as a function of the surface order
parameters in the nematic and the isotropic phases:

2y

1 + cogsq = E3{qon2 + oy Z(Qon3 + Qoi3)3

+ 3{qo, - QOi)z(QOn + go; - 1), (6.151)
where Qo stands for qoi(L), and g and uo have been eliminated by
using Egs.(5.148) and (5.149)}. The first term in the above
is the contribution from the spatial inhomogeneity of the order
parameter and the second that from (roughly speaking) the solid-
nematic interaction; obviocusly, the latter disappears when dop
coincides with 9oy - Here, the nematic ligquid partially wets the
golid-isotropic interface. However, it should be emphasized when
it happens that qon=qci=0, we have cosda=-1 s0 that the nematic
liquid is completely repelled from the golid-isotropic interface;
put differently, the isotropic liguid completely wets the solid-
nematic interface.

Let us next proceed to the discussion of the third case.
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Because of the strong ordering effect of the interface, here we
have
Qoi(H)=Qon 2 1. (5.152)

So that, from Eq.(5.146) and Eg.(5.147b), it follows that

Tgi ™ Ygn ® Thni- (5.153)

and hence, according to Young's equation, we obtain
a = 0, (5.154)

This corresponds to the condition of complete wetting of the
golid-igsotropic interface by the nematic liquid.

The second case is the hardest to analyze among the three,
as appreciable from the fact that this case is connected with such
a subtle property of the interface as the prewetting transition
which we have mentioned in the former section. Because of the
presence of multiple local minima, the true equilibrium solution
hags to be determined by comparison of the interfacial tensions
corresponding to the 1low order-parameter and the high order-
parameter solutions. For the sake of calculating the contact
angle, however, it is enough to note that if qoi(L) is the
equilibrium solution, the contact angle is given by Eq.(5.151),
and if qoi(H) is so, the complete wetting condition Eg.(5.154)
applies. Therefore, Eqgs.(5.151) and (5.154) exhaust all the
possible situations.

The most remarkable feature of the contact angle in question
is +that it has a very clear correspondence with the. degree of
surface order parameter. Figure 5.19 shows the contour of eqgual
contact angle on the plane spanned by qo, and qoj. As «clearly
seen, if and only if the surface order parameter in the isotropic
phase exceeds the order parameter at T,, the complete wetting
condition of the nematic ligquid is fulfilled. And, as already

mentioned, the complete wetting by the isctropic phase (a=180



deg} 1is possible only at 4o,90;=0. Finally, we would like to
point out that the line of =90 deg, given by qon+qoi=1, also
deserves a special attention as a line which demarcates the region
in which the nematic order is relatively stable on the solid
gsurface from that in which the isotropic state is more stable. The
measurement of the contact angle provides us with information on
the energetics of the nematic-wall interface which is
supplementary to that obtainable from the wall-induced

pretransitional birefringence measurements.

'y O°
=
&
o
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4 d 9 O ° - [E— e -
- 1/(50, FIG.5.19, Iso-contact angle
i contours on the ggn~dej
~130° plane.
4
\ Msor
s
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ok 1701 L I ; i i >
0 1.0
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5.6 Anchoring strength in the Landau-de Gennes model[73]

Finally, we shall derive an expression for the extrapolation
length bagzed on the present phencomenclogical model of the nematic-
wall interface. In contrast to the cases of the gurface order and
the contact angle, we need here to take account of the term which
describes the effect of director deformations. Since the polar
{out-of~plane} and the azimuthal (in-plane) anchorages can be
treated in completely the sameé manner, we will concentrate here on

the case of a polar anchorage.

5.6.1 The model

In terms of the angle between the director and the 2z-axis,
8, the term in the thermodynamic potential, which is related to
the curvature deformation can be written as [see Eqgs.(5.114) and
{5.125)] 3q2(d®/d§)2. By multiplying it an arbitrary constant
factor K/3, we use a slightly generalized form of thermodynamic
potential than Eq.(5.125) as follows:

2

o0 dq
f [7(T)q? - 2¢° + ¢4 +(-—>
0 aZ

Qa/(3A 7 ;)

2d®3 B
+ Kq (E&) 1d8 + 205(q0).

(5.155)
Iin accordance with the thermodynamic route of defining the
anchoring strength, we should here conceive that the nematic
ligquid crystal is subjected to a curvature stress in the absence
of an external field. The Frank deformation energy density is now
given by
40

2
- (<
£40¢) = 37 ;Xq (d?;). (5.156)

In the present model, we have neglected, Ffor the sake of
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gimplicity, the coupling between the spatial variation of the
order parameter and the director orientation.

To find out the anchoring strength through the thermodynamic
formulas derived Chapter 4, we need to calculate the egquilibrium
interfacial tengion (under a curvature stress) to firgt order in

£ By applying the variational calculus to Eg.(5.155) with

a
respect to ©(Z), we obtain the Euler-Lagrange eguation for
G(Zf) which reads

a an
— Kq% —— = 0, (5.157)
az az

with the boundary condition at the interface

wtho)(e—@e) = Ko wgz, at =0, (5.158)

where _

Woldod = Wy(Qo) /(6T ,4),
and we have approximated s8in(9-0.)~(8-0,), since the
deviation of the director from the easy axis is assumed to be
small. From Eq.(5.157), we immediately see that in the bulk
nematic, where g is congtant, the Frank elastic energy densgity
becomes spatially invariant; we shall define a dimensionless

elastic energy density in the bulk nematic fn via

= -1
fn = gEi§> fd(z)/(erniéc 3. (5.159)

The Euler-Lagrange eguation is an expression of the condition
of mechanical equilibrium that the torque transmitted per unit
area be constant throughout the nematic. Now, in terms of fn' wve

can write this condition as

ie
2 Z 1/2
Kq® ww— = (2Kg,“f )} ’ (5.160)



W,(20)(00-0,) = (2Kqy2e )1/2, (5.161)

The egquilibrium profile of the order parameter also satisfies
the corresponding Euler-Lagrange egquation resulting from
Eq.(5.155) [Isee Eqgs.(5.126) and (5.127)1:

a%q 4o (qQ 30\2
)

2 H = —_ (5.162)
a¢ dq ag
and _
4q(0) 4o,
ag dqo
dWol(ge) 1 dW,(qo)
o oo ied, o o2haniel (@...@eﬁ (5.163)
dqe 2 dqo

where Wo(go)=Wol(Qo)/ (67 44).

I£f we here denote the eguilibrium order parameter profile in
the absence of curvature stress as ¢, ({), it is obvious from
Eqs.(5.161)-(5.163) that

QL) = qg(&) + O£ ). (5.164)

where O(f,.) is Landau's symbol to denote terms higher than £first
order in f . Because the thermodynamic potential in the absence of
fn is stationary with respect to the small deviation in g{({) from
qe(ﬁ), we can neglect the change of thermodynamic potential due
to the wvariation of order parameter induced by the curvature
stress. Therefore, we are allowed to replace g(Z) by qﬂ(Z) in

Eq.(5.155) with an accuracy up to first order in f For

n‘

brevity, we shall simply write (&) instead of qe(Z) below.
Using Egs.{(5.155), (5.160) and (5.1i61), the interfacial

tension o©of the so0lid wall-deformed nematic interface c¢an be

written as

5 - 72



(£ ) 6 £ j.{ ii ! 1d& £ g : & f
v (£ = Yo * B7 ... - ¢ —B 7.:E_,
n ni*n 0 qz qbi gz(qo) nin

(5.165)
wvhere 7., is the interfacial tension in the deformation free
state, Substituting the above into the thermodynamic definition
of the anchoring strength Eg.{(4.179b), we arrive at an expression

for the extrapolation length in the present model:

o0 2 2 2
q - g{&) K q
d, = gcf b 5 ac + §c~:--—b~. (5.166)
o g( ) WZ(Qo)

Completely the same eqguation applies to the azimuthal anchorage.

In this equation, the second term, hereafter referred to as
de{Z), is the ordinary extrapolation length representing the
contribution of the direct interaction at the.interface. However,
the first term, de(l), ig a novel one which apparently comes from
the order parameter inhomogeneity near the interface. And this
term actg in such a way that if the order parameter is lower near
the interface than in the bulik, this term results in an increase
in the extrapolation length and hence weakens the anchoring
strength, The presence of these two distinct contributions is in
complete agreement with the result of the density functional
theory of the anchoring strength [{cf. Eg.(5.108)].

In the present formula, however, the influence of the
gtructural inhomogeneity appears to be even more seriocus than in
Eq.(5.108), since the local order parameter ig appearing in the
denominator of the integrand. Let us illustrate this point a bit
more in detail by way of a simple example. If we assume the local

order parameter isg given by

q{Z)

qp + (do - gplexp(~L £ ./ &), (5.167)

we can easily carry out the integration to give
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q q
dg(1) = §1 —B—— + 1n =2, (5.168)

This equation clearly shows that, if the surface order parameter
ge 18 small, it can make quite a substantial contribution to the
anchoring strength. Indeed, if we set go = 0.1, and & = 16 nm,
which is kKnown as a reasonable value for a coherence length near
the c¢learing point [74,75)], we find de(l)ﬂ 180 nm; this is on the
same order of magnitude with the extrapolation lengths measured on
real solid~nematic systems. It is therefore expected in particular
that in cage the surface-induced disordering transition (go—>0)
does occur, it is expected to bring about a characteristic
feature on the extrapolation length which is readily
distinguishable in o¢rdinary experimental situations. We will
indeed present an experimental observation of this behavior in
Chapter 7, made on an obligquely evaporated BS5iQ0 film-nematic
system.

It should be noted furthermore that when the surface order
parameter is larger than the bulk order parameter, de(l) gives
rise to a negative contribution, which corresponds to a "super-
strong anchoring condition," so to speak. Although the absolute
value of this contribution is not very large, +this appears to be
one of the characteristics of this term in view of the fact that
d,(2) should be always positive so as to assure the thermodynamic
gtability of the alignment. This effect ig intuitively readily
understandable, since the enhancement of the order parameter
implies an increased rigidity of the medium, gs¢e that it will
become relatively hard to deform this part in comparison with the

normal region.
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5.6.2 The extrapolation length as function of surface order

. parameter

Based on the Euler-Lagrange equation, Egq.(5.128), satisfied
by the eguilibrium profile of the order parameter gq{(f), it is
possible to obtain an analytical expression for the extrapolation

length. By a straightforward hut tediocus calculation, we find

(qb+3qo)(qh~qo)

3 —
e ¢ qbqo{{4mqb 1}Uzqo + [qoz+(qh*1)(qh+2qo)]1[2}
Kgq 2
+ £, b (5.169)

This equation is obviously wvalid even when Ec is regarded
a8 a temperature-dependent parameter.

In order te have an image of the nature of the above
egquation, let us shortly concern ocurselvesg with the behavior at
the clearing temperature. Since g, =1 at T,, Eq.(5.169) reduces to
a very simple form:

(1+3qQ)(1"Qoh ECK

. (5.170)
e ¢ 2 gol W5(q0)

Therefore, the first term de(l), coming €£rom the inhomogeneity of
the order parameter, igs seen at this temperature to increase in

proportion to qa"z as the interfacial region becomes

orientationally disordered. This is in contrast with the qo”l
dependence in EHg.(5.168) found by using a trial function which
exponentially relaxes from go to 9y - This difference can be
ascribed to the fact that, at Tc, the disordered layer near the
interface gradually grows to have a macroscopic thickness as (o
diminishes, 8o that a complete "depinning"” o¢f the interface
between the ordered (bulk) and the disordered (surface) phases can
occur at last. If we take, for example, go=0.]1 and §c=16 nm as

before, we now have de(1)=930 nm, which is nearly six times as



“large as the value found via Eq.(5.168). This corresgspondg to a
rather weak anchoring condition. that the influence of the order
parameter inhomogeneity becomeg even more significant in the

vicinity of Tc, provided +the surface order parameter is
appreciably depressed.

In Fig.5.20, d,(1) is plotted as a function of the surface
order parameter at various values of the bulk order parameter
based on Eq.(5.169). As already emphasized, de(l) increases
rapidly as gqo tends to vanish. Furthermore, it should be noted

that the dependence of de(l) on o changes from the qo'l to the

QQ“Z dependence as q,->0. When go is large, de(l) is at around
$c. In this respect, the first component of the extrapolation
length 1is seen to exclusively reflects the disordering nature of

the solid-wall interface.

F1G6.5.20. The dependence of the
structural part of the extra-
pelation length on the surface
order parameter.

d. 1)/,

0 02 04 08 08 1O
reduced surface order paromsfer g,

5.6.3 Model calculation of the temperature dependence of de(l}:

Critical behavior near Tc

In Fig.5.21, de(l) ig plotted as a function of temperature
for wvarious values of g and uo. [see Eqgq.(5.124)] with a special

attention on 1its relation to the surface-induced disordering
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£ransition; ﬁa(qo)=~qqo+uoq02/2. The calculations have been

performed by adopting the bulk order parameter which changes with

temperature T as

qy

This

-

1 T -T
S (3409 + 1601 4 L yI/24072 (5.171)

*
C

expresgion fits the experimental results for 4-n-pentyl-4'-

cyanobiphenyl {731, when the temperature range of superheating

above TC, i.e. Tngc, is assumed to be 0.24 K.

LA it T TTrTTYTTE T TTrTT ¥ ‘itlioa

1y

Lo i 1%

FIG.5.21. Extrapolation length dg (1}

10? due to the interfacial inhomogeneity

of the order parameter for various
o~ surface-potential parameters, u and g.

The solid lines are with g=0 and,

from upper to lower (a) ug = 3, (b)

o =2 (S} ugy=l.5, (d) uozltO, (e) u0f0.9,
(f) up=C.8., The broken lines are with
uo=1.5 and, from upper to lower, with
{g) g=0.0%, (h) g=0,05, and (i} g =0.1,

o dal

illlll!l

0
b
i 10

As clear from Eq.(5.148), when g=0 and us>»l {namely, when the

disordering field is sufficiently strong in the absence of

ordering field), the gurface order parameter vanighes at Tc; and,

Eq.(5.143) shows that, in sufficient vicinity of TC, go decreases

on heating according to (TC*T)IIZ {see Fig.5.221. Concomitantly,
Eg.{(5.169) reveals that de(I) should diverge as 1/(TC—T}, showing

a critical behavior toward the c¢learing temperature. Since ﬁz(qo)

in general invelves a term linear in qo., de(Z) is here expected to

less singular than de(l).

The calculated curves with g=0, however, show a slightly, vet



distinctively smaller exponent than unity even at 1()_2 K below Tc'

because of a somewhat slower decrease of Qo than the predicted

Mlllill T T 1"'||l 1 * "l'il‘ 1 L) ‘ll_l.

FIG.5.22. Temperature dependence
of the surface order parameter
for variocus surface potential
parameters. The solid lines
are with g=0, from lower to
upper with (a)ug=3, (blug=2,
(ehug=1.5 (d)uy=1.0, (e)u,=0.9,
{f)uy=0.8. The broken lines
are with uy=1l.5% and, from
lower to upper, with {g)g=0.01,
(h)g=0,.05,and (i)g=0.1.
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¢critical behavior. And the deviation from the ideal behavior
becomes quite remarkable at Tc-l K. Thig shows that, even when

the surface-induced disordering transition dces occur, the true
exponent is observable only at temperatures extremely close to Tc'

When g¢g=0 but u<l, i.e. when the disordering surface potential
is not large enough, the surface corder parameter assumes a non-
zero value go=l-u even at Tc’ thereby making de(l) always finite,
When g»0, geo does not vanish at Tc for any value of u, and as a
result the temperature dependence of d4,(1) shows a saturating
behavior as the temperature gets close to 'I’c {Fig.5.21]. At lower
temperatures, however, de(i) is seen to approach the curve with
g=0.

The fact that de(l) retainsgs a large decreasing rate even at a
temperature well below T, is a universal feature of the
extrapolation length resulting from the order parameter
inhomogeneity [see Eq.(5.169)1; this is due to the fact that, as
the temperature is lowered, go approaches Qpr thereby reducing

the inhomogeneity near the interface. Consegquently, this



gstructural contribution is expected to be important only down to a

few degrees below Tc.
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Chapter 66

COCRDER-DISORDER PHENOMENA

AT NEMATIC INTERFACES

By way of the Landau-de Gennes model of a nematic interface,
we have learned in the former chapter that the orientational order
near the interface is subjected to various alterations according
to the anisotropic nature of the interface. And, a few
experiments have been suggested, which would yield direct
information on the anisotropic part responsible for those changes:
{1) Walli-induced pretransitional birefringence, (2)Contact angle
experiments at the temperature of the coexistence of the nematic
and the isotropic phases, and (3) Measurement of the anchoring
strength. In particular, the first two phenomena are connected
with the term in the phenomenological expression of the
interfacial tension, which does not explicitly contain the
director; that 1is, the term solely governing the occurrence of
orientational order or disorder at the nematic interface.

In this experimental chapter, we shall present the results of
observations of these phenomena, focusing on the order-disorder
aspects of the nematic interface; the topics concerning the
director anchorage will be treated in Chapter 7.

In Section 6.1, the measurements of the contact angle at the
namatic-isotropic-solid three-phase contact line, performed for
various substrates, are described. First of all, the results of
these observations reveal that the contact angle greatly varies
from one substrate to the other, even though these substrates
produce uniform alignment of good and apparently indistinguishable
guality in the nematic phase. In particular, the substrates
treated by the well-known "rubbing” and "oblique evaporation”

technigques were found to exhibit completely opposite result as



regards the contact angle; the rubbed polyvinylalcohol surface is
weil wet by the nematic liquid, while the gurface with an
obliquely evaporated 8i0 film is almost completely wet by the
igotropic liquid. If the prediction of the Landau-de Gennes model
of the nematic interface is correct, this observation implies that
the orientational order at these nematic interface should be very
different from each other. It is also revealed that the contact
angle experiments, more precisely the texture observations in the
nematic~isotropic coexistence regime provide us with large amount
of information which reflects various subtleties occcurring at the
interface.

In Section 6.2, we present the results of the wall-induced
pretransitional birefringence experiments done on the rubbed
polyvinylalcohol (PVA)-nematic and the obliquely evaporated 8iQ-
nematic gystems. These experiments unambiguously show that, as
least in the isotropic phase, a dramatically enhanced
orientational order does exist at a rubbed polymer~-nematic
interface, but at the SiO-nematic interface, +the orientational
order, if any, should be several orders of magnitude smaller than
that at the rubbed polymer-nematic interface. In combination with
the results of contact angle experiments, these observations
demands (within the context of the Landau-de Gennes model) that
the orientational order has to be acgordingly enhanced or reduced
even in the nematic phase.

Finally, in Section 6.3, the effect of layer thickness on the
nematic-isotropic transition is examined by redgcing the thickness
of nematic layer down tc below one hundred nanometers in between
lens-shaped substrates. Though still highly gqualitative, the
results of this experiment independently confirm the ahove
predicticon by showing a correct enhancement or depression of the
transition temperature with the reduction of thickness, depending

on the substrate used,



All cf those results show that the rhenomenclogical
degscription of a nematic interface, formulated in terms of the
gsimplest orientational order parameter, gives rise to consgistent
picture as to various essentially distinct phenomena, at least
near the phase +transition point. A successgs of such an order
parameter theory of nematic interface is expected to have a deep
implication for the understanding of interfacial éroperties of
other 1liquid c¢rystalline phases, whose transition are also

described by an appropriate order parameter.



6.1 Contact angle phenomena at the clearing point: Equilibrium

shape of a nematic drop at the isotropic-substrate interfaceil]

The contact angle we will be concerned with is the angle made
by the nematic-~isotropic, nematic~substrate, and isotropic-
substrate interfaces when they meet together. As noted in Chapter
5, this rather exotic contact angle is expected to be quite
sengitive to the anisotropic property of the interface. However,
because the nematic and isotropic 1liquids can coexist in
equilibrium only at the clearing point, the observation of such a
contact angle is possible only at this unique temperature. Here
we present the results of an extensive observation of the contact
angle of 4-n-~pentyl-4'-cyanobiphenyl (5CB) with respect various

substrates including rubbed and obligquely evaporated surfaces.

6.1.1 Measuremsnt of the contact angle

In principle, the contact angle in question can appear only at
the nematic-isotropic transition point [Fig.6.1]). So, it might
seem at a glance difficult to perform such an experiment in a
well-controlled fashion. However, the phase transition of a real
liguid crystal is by no means ideal, but due to inherent impurity
in the ligquid crystal, the
transition 1is more or less
broadened over a finite tem-
perature, The 5CB we used isotropic nematic
showed a nematic-isotropic
two~-phase region of about
2X10"% K as  delivered.

solid
Hence by a careful control of
temperature, it is not diffi- L ) — o
. _ FIG.6.1. Nematic-isotropic-solid
cult to stay in this tempera three phase line of contact.

ture region for indefinitely



long time, observing the true equilibrium state of the contact.
For the purpose of this observation, we have devised a
precision temperature-controlled polarizing microscope in which
the sample temperature can be fixed with an accuracy better than
1073 x isee Appendix 1]. The contact angle was measured by a

modification of the sessgile

drop method. Here, however,
the drop of a 1liquid was )
<
brought about hy a sponta-
necus heterogeneous nuclea- isotropic — - -

nematic
(isotropic)

tion on the surface of the (nematic) —— —

substrate which occurred as

] -

the temperature was lowered

{raised) from the isotropic
FIG.6.2. Heterogeneocusly nucleated

(nematic) state ([Fig.6.2]1. drops of the nematic ({isotropic) phase
And the temperature was fixed in the sea of the isotropic {nematic)
phase,

at an appropriate temperature
during the observation.

The ligquid c¢rystal was confined in between a pair of
identical substrates forming a sandwich-type cell of about 40 um
thickness. Because the drop of a nematic (or isotropic) liquid so
obtained was at best 500 um in diameter, it was not possible to
use a familiar optical reflection method or such for measuring the
contact angle. At present, we observed the drop under a
polarizing microscope with monochromatic illumination at the
wavelength of 560 nm. According to the variation of thickness over
the nematic (or isotropic) drop, optical interference fringes
appear, from which we can estimate the approximate shape of the
drop. In order to have a maximum fringe visibility regardless of
the orientation of the nematic director, we used crossed circular
polarizers. The sclid substrate examined and the method of

surface treatments are listed in Table 6.1.



TABLE 6.1 Substrates, methods of treatment, and the alignment,

Substrate Method of Alignment
treatment
Rubbed PVA Glass slides were spin-coated with Planar

1 wt% aqueous solution of polyvinyl-
alcohol(PVA), dried, and then rubbed
with leng cleaning paper 100 times.

Bare PVA Glass s8lides were spin-coated with Random
1 wt% agueous golution of PVA and Planar
dried.

8i0 (8 Si0 was vacuum evaporated onto a (Random)

=0 60? glass substrate at a desired angle Planar

80° 8 from the surface normal at the or
rate of 7 A/s for 90 s. Tilted

As cleaned Glass slides were cleaned by a Random

Glass hot (70°C) detergent, subjected to Planar

sonication for 5 min, rinsed with
distilled water, gsoaked in acetone,

and blown with dry nitrogen gas.

Rubbed Glass Cleaned glass 8lides were rubbed Planar

with lens paper.

Rubbed and Rubbed glasg was re-cleaned by the Quasi
Cleaned gsame procedure as above. Planar
Glass

CTAB film Gilass slides were dipped into a Homeotropic

chloroform solution (0.5 %) CTAB™.

after dried, excess CTAB was wiped cut.




On cooling or heating, the number density of nucliei is
heavily dependent on the rate of temperature scan. In particular,
if the new phase appearing in the mother phase hag a small contact
angle, it often happens that the small drops rapidly connect
together, forming a metastable uniform layer. Once such a
metastable film is formed, it is no longer possible to measure the
equilibrium contact angle. So, the rate of cooling or heating has
to be carefully determined so that an isolated drop <c¢ould be
prepared.

In order to estimate the shape of the drop from the f£ringe
patterns, we need to have some knowledge on the configuration of
the director inside the nematic. In the case of 5CB, the director
is known to be tilted from the nematic-isctropic interface by an
angle about 28 degrees from the interface [2,3]. Hence, for planar
and homeotropic boundary condition, the director configuration
which is compatible with the restriction at nematic-isotropic and
nematic~-golid interfaces may be drawn as something like that shown
in Fig.6.3. These configurations are essentially identical with
that obgerved in a nematic sphere suspended in its own isotropic

phase [41].

/disclincﬁon\
=

Z \
4 3
planar homeoiropic

FIG.6.3, Director configuration in nematic drops
with planar or homeotropic boundary condition.

In these configurationgs there appears a characteristic
" disgclination on top of the drop. In particular, in the cage of a

planar alignment, it follows that a disclination line should



appear perpendicular to the initial alignment direction with an
enhanced optical anisotropy. Thig is in good accord with the
observation for the nematic drop as shown below. When the contact
angle is small, so that the
nematic drop is rather flat,

a rough egtimate of the con~

tact angle can be obtained by h

counting the order of fringe 5

at the center of the drop — r—

without Eknowing the detailed

structure of the director PIG.6.4. Geometry of the drop.

prefile in the drop. From
the value of the birefringen-
ce An=0.11, we see that at this wavelength of observation, one
fringe corresponds tco the nematic layer thickness of about 5 um.
Then, knowing the depth h and radius r of the drop, and assuming
that the nematic-isotropic interface is spherical [Fig.6.4], we

can approximately calculate the contact angle a via
cosa = (r% - n%)/(r% + n%), {6.1)

If the nematic drop is to assume an obtuse angle, it becomes
imposgsible to straightforwardly apply the above mentioned
procedure. But in this cage, an isotropic drop brought about on
heating the sample has a complementary acute angle. So that in
this case too we can obtain a measure of the nematic contact

angle.
6.1.2 Microscopic observation of gessile drops

For those substrates listed in Table 6.1, the eguilibrium
shape of nematic or isotropic¢ drops were observed by means of the
precigion temperature-controlled microscope. Micrographs of the

observed sessile drops are shown in Figs.6.5-6.14. And the



resulting contact angles are tabulated in Table 6.2. The scanning
rate of temperature, till a first nucleus appeared, ranged from
gsmaller than 10—3 K/hr up to 10"1 KE/hr, depending on the contact

angle of the new phase on the substrate.

A. General description

Iin actual observations, what appears most striking is the
regularity of the shape of the eqguilibrium gsesgsgile drops; except
for those cases in which the substrate surfaces are rather
damaged, the drops of new phases invariably assume almost
perfectly circular shape. This gshape is quite stable, and, as far
as the present results are concerned, there is no problem as
hysteresis associated with the advancing and the receding angles
£51. When two neighboring drops coalesce, in particular, +the
initial dumbbell-shaped domain retains a circular shape in a few
minutes. In view of the small interfacial tension (on the order
of 10“5 J/mz) of the nematic-isotropic interface, this readiness
of the drops to assume circular shape is really surprising. This,
on the one had, shows that there is not much hazard on the
substrates as to pin the three-phase contact line, and on the
other, indicates that the circular shape observed can indeed be

regarded as an eguilibrium shape of the ligquid drop.

B. Specific observations
1. Rubbed and Bare PVA

At a rubbed PVA film-isotropic liguid interface, the drop of
nematic 5CB adopts a very small contact angle 1legs than 20°
[Fig.6.5(a)]. This corresponds ¢to the cagse of almost perfect
wetting condition by the nematic liquid. And, indeed in some
preparations, we observed that upon cooling from the isotropic

phase, a uniform "epitaxial” nucleation of a nematic £ilm grew to



form an almost uniform layer of the nematic [Fig.6.5(b)]. Because
it 1is difficult to characterize and precisely reproduce the pro-
cess of rubbing [6], we have not as yet succeeded in clarifying
the factors affecting the variations in the contact angles.
Whether the epitaxial growth mentioned above is indeed the growth
of a continuous film from the beginning or as a consequence of a
rapid coalesence of isolated nuclei could not be determined even

at the lowest rate of cooling.

500 um

% 5

e

FIG.6.5(a). A drop of nematic resting at the
interface between a rubbed PVA and the isotroic
liquid. Note the clear disclination line on top

of the drop.



FIG.6.5(b) The "epitaxial" layer growth
of nematic phase upon cooling from the
isotropicphase. Substrate: rubbed PVA.

As expected from the presumed director configuration in Fig.6.3, a
disclination line which is apparently bisecting the drop has been
observed. Further from the distortion of the birefringence
fringes by the disclination line, the optical anisotropy is seen
to be larger along the disclination.

As an extreme case of a weak rubbing, we observed the sessile
drop resting at the bare (unrubbed) PVA-isotropic interface
[Fig.6.6]. The result in this case is dramatically different from
that on the rubbed PVA, showing a nearly rectangular contact
angles for both nematic and isotropic drops. In comparison with
the results for the rubbed PVA, it is clearly indicated that by
the very rubbing action, the PVA acquires an ability to uniformly

align nematic liquid crystal as well as to be wet by the nematic
liquid. Hence they may be interpreted as resulting from the same
microscopic origin. As shown below this is an observation to be

sharply contrasted with those for evaporated Si0 surfaces.
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FIG.6.5(c) Drops of nematic liquid resting

at the interface between the isotropic liquid
and bare PVA. The regions withou concentric
fringes are the part where the nematic occupies
the whole volume in between the two substrates.

2. Evaporated Si0O

At the SiO-5CB interface, the nematic drop assumes an obtuse
angle on cooling from the isotropic phase. Thus, we made an
observation of the contact angle of the isotropic drop at the
interface to measure the complementary angle of the nematic
contact angle. In Fig.6.7 displayed are the micrographs of the
isotropic drop in equilibrium with the nematic liquid on SiO films
evaporated at 0°, 60°, and 80° from the substrate normal.
Clearly, the isotropic liquid are now almost perfectly wetting the
substrate. Though they may seem quite similar to the rubbed PVA
case [Fig.6.5(a)], a characteristic difference can be readily
noticed concerning the disclination line appearing at the center
of the circular drops [Figs.6.7(a)&(b)]; that 1is, the optical

anisotropy is now 1lower around the disclination 1line than



otherwise expected. This is probably because the director
surrounding the isotropic drop is arranged in a complementary

fashion when compared with the nematic drop.

500 um

]
1

FIG.6.7(a) Isotropic drops in equilibrium with
the nematic liquid at the surface of SiO(0°).

>

FIG.6.7(b) Isotropic drops resting at the
interface between the nematic and the Si0(60°).
The separation between two fringes correspondes
to the thickness change of about 5 um.

gl



FIG.6.7(c) Sessile drops of the isotropic
ligquid resting on the Si0(80°).

Comparison between the cases of normal evaporation and 60°
evaporation shows that, in contrast to the rubbed PVA and bare
PVA, the contact angles at these Si0O films are almost identical
with each other quite independent of whether the substrate aligns
the nematic in uniform direction or not. 80, it 1% natural to

conceive that the origin of the uniform planar alignment on

In the case of 8Si0(80° ), however, we do not find any
disclination line over the surface of the drop. As the director
may be tilted on this substrate, the disclination line is expected
to be repelled toward either sides of the circle to avoid the
occurrence of an area with 1large orientational deformations.
Clearly, the drop appears to be exceptionally flat judging from

the separation of fringes. The contact angle of the "isotropic"



drop was estimated to be as small as 12° even after the
correction of the pretilt angle was approximately taken into
account. If we further take account of the contribution from the
roughness [7] of the deposited Si0O film as given in Ref.8, the
intrinsic contact angle can be even made larger than that for the
Si0(60° ). However, since no reliable information on the roughness
of the Si0 films is available, we shall work with the apparent

contact angle here.

3. As-cleaned, rubbed, and rubbed and cleaned glass

On as-cleaned glass, the alignment of liquid crystals 1is
unstable depending on their purity and the cleaning condition of
glass substrates [9,10]. Be it planar or homeotropic, the
contact angle of a nematic drop was observed to assume an obtuse
angle [1]. In Fig.6.8 the polarizing micrograph of a sessile

isotropic drop is shown.

500 um

FIG.6.8. Sessile isotropic iiquid drops
at the interface between the as-cleaned
glass and the nematic phase.



Here we can see a bisecting disclination line characteristic to an
isotropic drop resting on a planar-aligning substrate just as we
have seen in the case of evaporated SiO films. The contact angle
of this isotropic drop is as small as 28° , showing the relative
stability of the isotropic phase.

When the glass surface was rubbed with the lens tissue, which
was the same as that we used for PVA films, we observed a drastic
change of the nematic contact angle from obtuse to acute [see
Fig.6.9(a)]. In this case, however, the wetting property of the
glass surface was astoundingly irregular as shown in the Figure.
And we could observe the three-phase contact line to have been
pinned largely along the rubbing direction [note the direction of

the disclination linel. The nature of this defect is not clear.

i\ =\

FIG.6.9(a). Nucleated irregular domains of the
nematic phase on rubbed glass surface. Note,
however, that the contact angle of the nematic
domains is rather small.



When the rubbed glass surface was again <c¢leaned with the
standard c¢leaning procedure, the resulting alignment was still
highly anisotropic in the direction of rubbing; but the contact
angle was almost that we should obtain on as-cleaned glass [see
Fig.6.9(b)]. Then, it seems likely that, by the cleaning process,
some contaminant introduced by the rubbing action 1is removed
exposing the intrinsic surface of the glass, but there remains a
structural anisotropy on the part of the glass itself (groove,
aligned microcrystals, etc.) which then takes action to align
nematic molecules. The contaminant is obviously responsible to
make the nematic contact angle that small. And, 1in comparison
with the observations on the Si0O films, it may be so much in error
if we assume that the alignment mechanism of the as-cleaned and
the rubbed (intrinsic) glass is essentially similar to that of the
Si0 films.

FIG.6.9(b). Equilibrium shape of an isotropic
liquid drop observed when the rubbed glass
substrate was cleaned again by detergent, etc.



As noted in Chapter 3, the contaminant vs groove mechanisms
of surface-induced alignment is a matter of 1long debate. The
above observation seems to be of interest in the sense that it
could visualize the fact that both mechanisms are indeed in action
with some rough feeling of their relative importance in various

situations.

4. CTAB film

This is here the only case in which homeotropic boundary
condition prevails at the solid surface. Figure 6.10 shows the
nematic drops resting on the CTAB film. In agreement with the
prediction based on the conceived configuration of the director,
we can see that at the center of the drop is a point disclination
where the optical anisotropy is always absent. In this case, the
estimation of contact angle is somewhat difficult because of the
less significant thickness-dependence of the optical anisotropy.
However, from the size of the drop which is just to touch the
counter substrate, we can obtain a rough estimate of the shape of
the drop based on the knowledge of the cell thickness. This way.

we find the contact angle of about 70° for the nematic drop.

FIG.6.10. Sessile nematic
drops on the CTAB-coated
substrates. The dark
circular regions
surrounded by bright

thin lines are the
nematic domains in
contact with both lower
and upper substrates.




6.1.3 Summary of contact angle experiments
The observed contact angles of the nematic drops on

substrates are listed in Table 6.2.

TABLE 6.2. Contact angle of nematic 5B

at various solid surfaces.

Substrate contact angle of the

nematic liquid, 4

(degrees)

Rubbed PVA < 20
Bare PVA 90
S10(0° ) 160™
S10(60° ) 160™
Si0(80° ) 170"
As cleaned Glass 150"
Rubbed Glass irregular but small
Rubbed and cleaned 155
Glass

CTAB film T0

* Values calculated from the contact angle

of the igotropic ligquid.
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6.1.4

on treated surfaces
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Namely, there exists a general tendency that rubbed or organic
substrates are likely to give a Bmall contact angle for the
nematic, whereas inorganic substrateg bring about an obtuse angle.
Thus, based on Young's equation,

we can conclude that on rubbed or organic substrates,
state is more stable than the isotropic state (7

inorganic

+ s
T picosa,

rsi Ten

substrates, the

nematic state is

the nematic
), but on
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less

(Tsn>?si) than the igotropic state; for more detailed discussion



of the factors determining the equilibrium shape of a nematic
drop, taking account of the anisotropy of nematic 1liquid, see
Appendix 2. Furthermore in Fig.6.11, we see that, as long as the
Landau~de Gennes theory of the contact angle is correct, the
surface order parameter at Si0 or glass surface should be lower
than the bulk order parameter, but at rubbed PVA or Glass, the
surface order parameter has to always be comparable with the bulk
nematic order parameter at the clearing point.

In view of the well-accepted fact that inorganic surfaces are
usually of higher energy and strongly interacts with foreign
subgtance, it might appear unreasonable that inorganic substrates
are less efficient in orienting nematic molecules than organic
substrates are. Although it is not the primary aim of this
article to speculate on the origin of the alignment, it may be
appropriate to give some words of justification for such unusual
behavior as above.

The sgtrong interaction between inorganic sclid and nematic
implies that nematic molecules should form themselves a strongly
adsorbed layer. Circumstantial evidence for the existence ¢of such
a layer has been given by the fact that an S5i0(0° ) surface, which
does not usually align nematics uniformly, c¢an be made to orient
nematic director by introducing the nematic liquid with a strong
flow in the prescribed direction [11]); this unigue axis persists
even when the nematic is brought to the isotropic state.

Thus, the substrate that influences the bulk orientation is
not the s0lid itself, but the so0lid covered with the nematic
layer. And, the interaction between the adscrbed nematic layver
and the neighboring nematics is of primary importance in
determining their interfacial properties. Now, let us ask what
happens when the nematic molecules in the adsorbed layer are
oriented randomly rather than uniformly. On the one hand, it is
¢lear that the effect of the adsorbed layer is to shield the field
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due to solid. In this case, on the other, the mean-field felt by
adjacent nematic molecules may be rather weakened in comparison
with that in the bulk; this is because the large part of its
neighbors are randomly oriented. Therefore, at least in the mean-
field approximation, we would expect the orientational order near
such a randomly adsorbed layer should be more or less deteriorated
than in the bulk nematic phase., The effect of random field on the
order formation [12,13] hag been studied in conjunction with
magnetic systems, invariably showing a certain reduction of the
phase transition temperature or even a disappearance of the

ordered phase itself.

6.1.4 Temporal change of the contact angle on evaporated Si¢

Finally, in this section, we present an interesting
observation concerning the contact angles on evaporated SiQ(80° ).
As shown above, the contact angle of a nematic drop on the
Si0(60° ) is 1large, showing the relative instability of the
nematic order. However, we observed that this contact angle was
not a constant, but continucusly c¢hanged from the time of
preparation.

Figures 6.12 and 6.13 show the polarizing micrographs of the
isotropic sesgsile drops 4 days and 10 days after the preparation,
respectively. In the first 4 days, the sample was stored at a
temperature a few degrees above the clearing point, and in the
next 6 days, it was left at room temperature in the nematic phase.
The micrograph Just after the preparation has been shown in

Fig.6.7(b}.
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FIG.6.12. The equilibrium shape of the isotropic
drops on Si0(60°) 4 days after the preparation.
During this time, it was stored in the isotropic

phase.

FIG.6.13. The eguilibrium shape of the isotropic
drops on Si0(60°) 10 days after the preparation.



As readily discernible, the

contact angle of the

igsotropic drop has decreased
steadily with time elapsed.
In Fig.6.14, the contact

{degree)"
&

angle of the nematic liguid
i50

angle

is plotted ag a function of
time.

The contact angle may

contact

change ag a result of various

Qw
reasons such as impurity ad- 4

gorption, rearrangement of

¢

T ; :
adsorbed molecule, etc. 0 ' 5 10
However, the time scale of Time (days)

the change seems to be too FI1G.6.14. Time variation of the

contact angle (for the nematic)

long for the impurity adsorp- -
on 5i0{60°) after its preparation,

tion to be dominant. It is
indeed a right order of time
constant for the desorption and adsorption of strongly adsorbed
molecules. Then, if it is correctly the manifestation of the
spontaneocus ordering process whose rate is limited by adsorption-
desorption mechanism, it can indeed be considered as evidence for

the existence of randomly oriented adsorbed layver.
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6.2 Wall-induced pretransitional birefringence

Wall-induced pretransitional birefringence vields direct
information on the surface order parameter in the isotropic phase.
So, it 4is a kind of experiment that supplements the knowledge
drawn f£from the contact angle experiments. In view of the very
different contact angles observed for the evaporated S5i0 films and
the rubbed PVA, we have carried out the wall-induced birefringence
experiments. The results of these measurementsg were found to be
congistent with the contact angle experiments. The surface order
varameter at the rubbed PVA-5CB interface is almost comparable
with the order parameter in the nematic phase. However, the Si0O-
5CB interface exhibits only a negligible level of the
pretransitional birefringence.

Birefringence measurement is the most powerful method to
probe the orientational structure of ligquid crystals. Since this
method has been extensively employed and plays an important role
in the present study as well (for thin film transition as well as
anchoring strength measurement), it may be appropriate here to
describe the elements of the ellipsometric birefringence
measurement we have used in some detail. The results of the wall-~

induced pretransitional birefringence experiments follow next.

6§.2.1 Measurement of a small optical phage retardation

Technically speaking, the wall-induced pretransitional
birefringence experiment is nothing but a measurement of small
optical anisotropy in liquid <crystals. Although there are
numerous methods available for measuring the refractive index of
liquid crystals, the ellipsometric technigque [14] may be the most
gsensitive one as far asg the birefringence measuremsnts are
concerned; it may well be applied to the detection of a
submonolayer~equivalent retardation.

Here, we shall describe the fully automated ellipsometric
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system developed in our laboratory, which can detect a minute
retardation down to 1077 rad.

In Fig.6.15 shown is the setup of the ellipsometer system.
The basgic structure is identical with the ordinary ellipsometer.
The light from a Z2mW He~Ne laser is polarized, and is transformed
to a circular polarized wave by a quarter wave plate, This
light beam then passes through a stress-plate polarization
modulator [15] and is led to the sample cell, which is placed in
an electric oven. The strength of the transmitted 1light is
detected by a phtodiode through a gquarter wave plate and a
polarizer. The retardation due to the optical anisotropy of the
sample c¢an be obtained by measuring the firgt and the second
harmonic components of the output light with respect the fregquency

of the polarization modulation.

modulator A/4

B Al
i - LB L OB
) 4
onalyzer i ] polarizer
oven
It)
lock-in .
amp. driver
X "Iaf FIG.6.15. Experimental setup For obtical'phésé '

retardation measurements. The basic structure
computer is the automatic transmission-type ellipsometer
based on the polarization modulation scheme.

The modulator is operated at about 30 kHz, and

the reference signal is fed to the lock—in amplifier.

The qgquantitative operation of thig system can be readily
analyzed when the imperfections of the optical parts can be
neglected. At first, we assume that each pair of quarter wave
plate and polarizer before and after the sample cell are get to
form in each a circular polarizer; the optic axis of the guarter

wave plate is inclined from that of the polarizer by *®n/4.
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Further, we assume the circular polarizers are set in such a way
that in the absence of the gample and the modulator, the out put
signal vanishes.

Let J=E(i,1) be the Jones vector representing the circular
polarized light emitted from the first guarter wave plate with the
principal axes of the stress plate modulator taken as the
coordinate axis. Then, the action of the stress plate modulator

is to modify its phase in a time dependent manner as follows:
J' = E(i, expid(t)). (6.2)

After passing through the optically uniaxial sample, whose optic
axis is inclined by o from the axis of the modulator, J°' is

further transformed to
J'' = Efexp(iR)licos2a -~ exp(i¢)lsin2al,
[isin2a + expl(ig¢g)lcos2ail, {(6.3)

where R is the retardation due to the sample. Repeating these
procedures until the end of the last polarizer, we obtain the
time~dependent light intensity which impinges on the detector I(t)
as

I{t) = Io0l1 - cos¢cosR - cos4asingdsinR]. (6.4)

When R=¢=0, it follows that I=0 as required from the setting.
The phase modulation ¢(t) induced by the modulator is generally
written as

Pp(t) = Pposin2nft. (6.5)

Therefore, by extracting the £~ and 2f-components of I(t), we can
obtain both 8inR and c¢osR. Hence, in this method, R <can be
uniquely determined except for a difference of 2nn. Another
advantage comes from the fact that when R is small, the DC

component of I{t) alsoc becomes a small guantity. So that, in
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dealing with a small retardation, we can aveid the interference
from shot noise which results mostly from the DC part which plays

no role in the determination of R.

6.2.2 Measurement of Wall-induced pretransitional birefringence

We have measured the residual birefringence near the solid
gsurface in the isotropic phase of 5CB by applying the above
apparatus. The measurement of wall-induced birefringence has been
performed by several authors [16-21]1 since the piconeering work of
Mivano [16]. At present, it seems that, as far as a qualitative
feature is concerned, a consensus has been reached ag to the
relationship between the wall-~induced pretransitional
birefringence and the nature of surface treatments. Namely, (1)
rubbed substrate, be it inorganic or organic, brings about an
enhanced order; (2) the surface order on an 5i0 film is negligibly
small. Therefore, those results are geen to be, ag a trend,
compatible with the results of contact angle experiments desgscribed
in Section 6.1. However, closer look at the problem soon reveals
that there is still an inceonsistency between the resgults of the
birefringence and the contact angle experiments as pointed out by
Sluckin and Poniewierski {[22].

In this section, we report on a high resolution study of the
wall-induced pretransitional birefringence, especially, on an Si0
film-nematic interface. In contrast to the conventional studies,
in which the induced birefringence has been believed not to exist
on an Si0 surface, we have observed a small but definitely finite

surface ordering at Si0-5CB interface.

A. Pretransitional birefringence induced by a rubbed PVA surface
In Fig.6.16 shown is a typical trace of the retardation in
the rubbed PVA-5CB c¢ell as the temperature is lowered in the

isotropic phase to the clearing temperature Tc {redrawn on single
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substrate basisg). Near T wve see an apparently diverging

e’
behavior in a similar manner as shown in Fig.5.15 for the surface
order parameter go=1.l; however, it should be noted that it is in
effect difficult to determine whether it is a true critical
divergence or not, because the curve is not sensitive to the
change Iin go around go=1 as noted in Section 5.4, and the observed
birefringence involves a spurious contribution from the glass
substrate and the aligning PVA £ilm, which, in some cases, amounts
to 1073

the surface order parameter is larger or smaller than the order

rad. So that, it is impossible to tell with confidence if

parameter in the nematic phase T_.,. Moreover, when the retardation
was observed under a very strict temperature control with the
decreasgsing rate of 10"4 K/hr, the retardation showed a saturated
behavior at temperatures a few 1073 X above T Such a behavior
is incongistent with the simple Landau-de Gennes theory o¢f the
wall~induced pretransitional birefringence [see Section 5.41, and
is probably connected with the "finite size effect"” which

essentially gives the upper bound for the actual retardation.

GXEO"? T H T T 1 ] T T T
i rubbed PVA/5CS8 i
3
s 4 .
o
e = _
2
L=
-
5 2 1
®
o I3 i H ] 1 i H ki i
0 0.2 Q.4 06 G8 1O

temperature T- T, ({K)

rubbed PVA-5CB interface., The retardation shows a quasi-

diverging increase as the clearing temperature (T,=35.3°C)
is approached from the above,
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Nevertheless,
order parameter.
utilize Eq.(5.140)}. On assu-
ming {23-25] that T_-T'=1.1 K
and R =0.011 i.e., £ ,=10 nm,

Ang=0.11,

Here, we

we can transform
the above retardation data to
the temperature dependence of
the reduced surface order
parameter
Fig.6.17.
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the rubbed PVA/5CB interface.

Whether g

is larger than unity or not strongly depends
onn the magnitude of the supricus retardation

Rg

B. Pretransitional birefringence induced by the SiC film

the

Figure 6.18 shows the variation of the retardation for
Si0(60° )-BCB interface.
5XKT4 T T T { : 7
Si0 {(60°) / 5CB
3 4F 1
2
o 2k o
=~
2
| 2F .
=
"
I o .
O i L i 1 1
0 ! 2 3 4 5
temperature T-T;

PI1G.6.18. Wall-induced pretransitional birefringence at the

Sio{(60°)-5CB interface.

Note that it is two orders of magni-

tude smaller than that at the rubbed PVA-5CB interface.
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Obviously, the absolute value of the birefringence is nearly
two~order smaller than that observed at the rubbed PVA-5CB
interface, showing that the evaporated Si0 is legs effective in
orienting nematic molecules than rubbed FPVA. For a quantitative
argument, however, it should be stressed that, similar to the case
of rubbed PVA-5CB system, there exists a suprious contribution
from the glass substrate and the Si0 £iim, which may be ag large
as 10"3 rad and hence be comparable to the observed birefringence
at present. Nevertheless, the temperature dependence of the
gpurious retardation was confirmed negligibly small by wusing a
blank cell; thus, we can estimate the surface order parameter from
the rate of wvariation of the observed birefringence., By utilizing
the approximate formula Eg.{(5.142), which holds for small gq., we
obtain

do = 0.037, {6.6a)

for the 8i0(60° )~5CB interface, where we have assumed the same
values for bulk parameters as used above. Upon using Qc=0.2?
{231, we find for the surface order parameter in the isotropic
phase,

Qoy = 0.01. (6.6b)

For 5i0(0° ), we could also measure the wall-induced
pretransitional birefringence by making use of the flow-aligned
uniform cell [111]. The surface order parameter was estimated to
be Qoi=0.01 in complete agreement with that we have just obtained
for Si0(60° ).
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6.3 HNematic-isotropic transition in thin bounded films

When a thin layer of nematic liquid crystal is bounded by a
couple of solid substrates to enhance the relative importance of
ligquid crystal-substrate interaction, a modification of the
nematic-isotropic transition itself can be expected. Especially,
gsince the nematic-iscotropic transition is of weakly first order
and hence the orientational order parameter is correlated over a
long distance near Tc’ a marked change of the transition behavior
can be expected when the film thickness becomes comparable with
the coherence length of the order parameter.

Sheng 1[261 and Schroder [27)] studied the effect of a highly
ordering substrate within mean field theory and showed that the
trangition temperature shifts upward as the nematic layer thins,
and below a certain critical thickness of the order of 1000 A, the
transition becomes continuous. Sluckin and Poniewiersikil[22, 28]
also investigated the influence of a disordering substrate, and
gshowed the occurrence of the depression of the transition
temperature.

The purpose of this section is to describe the experimental
results performed on thin nematic films bounded either by the
obligue evaporation of 8i0 or by rubbed PVA. It is certainly shown
that depending on the nature of the solid-nematic interfacial
interaction, the nematic transition temperature shifts "upward” or
"downward."” Due to the semi-quantitative nature of the experiment,
however, the problem concerning the turn over to a continuous
transition could not be properly tackled. The present results are
completely in accord with the results of the contact angle and the
wall-induced pretransitional birefringence experiments, and point
in the direction that the surface order is deteriorated at 8Si0
surfaces and enhanced at rubbed PVA surfaces,.
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6.3.1 Experimental

Thin films of 5CB were prepared by sandwiching it in between

an optical flat glass plate and a half convex lens of 1 m focal

length as shown in Fig.6.19.

and the film thickness chan-
ged from practically 0 at the
center to about 200 um at
the edge of the substrate.
The surface treatments tried
were, as mentioned above, the
oblique evaporation of §iO
and the coating with PVA film
followed by rubbing. Here,
the treated substrates were
carefully set to give a sin-
gle crystalline (without
twist) nematic f£ilm. The
sandwiched film was placed in
a brass cell, and the glass
substrates were loosely fixed
to the side wall with paraf-
fine of 60" C melting point.
The order-disorder transition
was monitored by recording
the birefringence as a func-
tion of temperature by using
the experimental system des-
cribed in the former section.
The light beam was focused to
50 pmm in diameter and
impinged perpendicularly on

the nematic film. The sample

The substrates were 30 mm in diameter

Brass Cell LC

l /
\\&\\ \

e

N

Glass Plate

Lens

FIG.6.19. Cross-section view of the
liquid crystal cell (a), and the bire-
fringence Newton fringes observed when
the cell was illuminated with a mono-
chromatic light (540 nm) between
crossed polaroids (b).
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cell was placed in a precision temperature contreclled oven, and
the film thickness was changed by moving the oven ags a whole with
respect to the light path with a micrometer screw.

When studying the phase transition of a liquid thin film, we
often found it difficult to insure the purity of the material,
because of the large surface area-to-volume ratio. At present,
however, the liquid crystal at relatively thick parts may serve as
a regservoir of fresh material for thinner regions. Even if we
assume the diffusion coefficient of the impurity to be as small as
10”7 cmzls, the ample region of interest (within 1 mm from the
center) c¢an be virtually homogenized in a few days. For this
reason, we always started the observation at least three days
after the sample cell was prepared. In addition, the homogeneity
was occasionally tested by confirming that the retardation varied
symmetrically about the center as expected from the lens' shape.

On the other hand, the cell structure made it difficult do
directly assegss the actual thickness of the nematic layer, and
alsc the film thickness itself seemed to change slightly when the
temperature was varied over a relatively wide range, for example §
K. However, since we were primarily interested in the gqualitative
behavior in the vicinity of the transition point, we resgtricted
the temperature range of measurement to at most *£0.2 K around the
bulk transition temperature T (308.45 K), and the film thickness
was roughly estimated from the retardation value at the lowest

temperature by assuming the birefringence for bulk 5CB, An=0.11,

6.3.2 Shift of transition temperature with the £ilm thickness
Figure 6.19 shows the retardation as a function of
temperature for thin £films of 5CB sandwiched between evaporated
Si0 layers. For each film thickness, the retardation 1is
normalized at T=To to emphasize the gualitative changes occurring

in the transition behavior as the nematic f£ilm thins.
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FI1G.6.20. T@mperature d@p@nd@nce of the retardatlon for SCB thln
films of various thicknesses sandwiched between evaporated Si0
layers. For thicker films, the steepness of the transition is
limited by the 1072°C-wide two phase region due to inherent
impurity in the nematic., T =35.3°C.

The most striking feature, here, is that the order-disorder

transition changes from the virtually discontinuous one at 4900 A

an apparently continuous one for thinner films. It must also

be noted that the transition temperature, if it is identified with

inflection point, shifts downward by a few 10_2 K with the

decrease in the film thickness. This result is consistent,

gqualitatively at least, with the previous obhservation that the

ordered phase is less stable than the disordered phase on this

substrate,.

In macroscopic terms, the wvariation of the transgsition

temperature, AT, with the film thickness can be related to the

latent heat g and the change of the sgolid-liguid crystal

interfacial tensions:

AT = ZTc(Tsi"Tsn)/ﬂqd' (6.7}

we know from the contact angle experiments that Tgi = Tgn

i Then, substituting typical values p=1.0 g/cm3
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q=2X103 J/g and 7, =2X107%3/m?, we £ind AT=-0.06K for a 1000
at showing a reasonable agreement with the present observation.

The retardation for &5CB thin f£films between rubbed PVA

gubstrates is shown in Fig.6.21.
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FEG 6. 21 Temperature dependence of the retardatlon for SCE thln
films of various thicknesses sandwiched between rubbed PVA layers.
In contrast to the case of 5i0 substrates, the transition point
moves upward as the 5CB thins, and the nematic remains to be

well ordered at temperatures above the clearing point (TC=35.3°C).

This time, the temperature dependence of the retardation
below T, is almost independent of the f£ilm thickness; but above
Tc, they show a marked enhanced (averaged) order, strongly
depending on the film thickness. In contrast to the case of 5i0
substrates, the nematic-~isotropic transition temperature now
shifts upward by about 4X19"2 K while the thickness is reduced to
900 A. In view of the wetting property of the rubbed PVA as shown
in Section 6.1, this is also in reasonable agreement with the

Kelvin equation Eqg.(6.7).



Chapter 7

STARIL.ITY OF

THE SURFACE-INDUCED AILIGNMENT

The alignment of a nematic director brought about by a
boundary is stabilized by some kind of "anisotropic force" that
exigte at the interface. It is therefore guite natural to expect
that if the degree of stability, namely the anchoring strength,
could be measured, one would have direct information through which
the microscopic origin of the alignment might be glimpsed. Although
numercus attempts [1-321 have been made in this direction so far,
it is only recently that reliable measurements of the anchoring
strength have become possible due to the advent of appropriate
experimental techniques. Accordingly, the measurement and
thecretical interpretation of the anchoring strength is still in
ites infancy, and there remain a number of unaddressed problems open
to future investigations.

In this section, we shall describe the current status of the
experimental investigations of the anchoring strength focusing on
the work of the pregsent author. In view of the crucial role played
by the experimental technigues, <conventional methods for measuring
the anchoring strength are first reviewed with an emphasis on their
reliability and precision. Next, we describe the "high electric
field technique (HEFT)," developed by the present author (29,301,
in detail. HEFT is an extremely simple, vet accurate method, which
allows a determination of not only the extrapoelation length but the
entire functional form of the anisotropic part of the interfacial
tengsion of a nematic-wall interface. The results of application of
HEFT to rubbed polyvinylalcohol-nematic interface and obliguely
evaporated Si0O-nematic interface are presented, showing that the

anchoring strength at the former interface is rather strong without



marked temperature dependence, while that of the latter is much
smaller with a strong temperature-dependence. In particular, it is
shown that the anchoring strength at the nematic-5i0 interface
exhibits a gquasi-critical weakening toward the nematic-isotropic
trangition temperature, Based on the thermodynamic arguments and
the Landau-de Gennes theory of the anchoring strength, it is argued
that the observed behavior can be ascribed to the "surface-induced
disordering transition” occurring at the nematic~8i0 interface, in
consistent with the contact angle and the wall-induced

pretransitional birefringence experiments described in Chapter 6.



7.1 Techniques for measuring the anchoring strength

As emphasized in Chapter 4, the concept of the orientational
anchoring strength has double facets, one of which is concerned
with the energetics of the nematic interface and the other with
its geometrical property (concerning the director profile).
Furthermore, s8since there are several geometrical properties which
are esgentially connected with the nature of the interface, we can
in principle conceive guite a few methods for use in measuring the
anchoring strength. In Table 1, current techniques are classified

according to their measurement principles.

TABLE 7.1 Classification of techniques for measuring

the anchoring strength.

- Indirect [7-13]

Technigues A
~ Surface Disclination [2-6]
- Geometry Type -
- Conflicting Surface

Alignment [15,18]

- Wedge Cell [14,16,17]

- Direct

Freedericksz Transition
- External-Field [19-241]

Type High Field [25-30])

Torgue Measurement {31,321

Firgt, we distinguish between an "indirect” [7-13] and a
"direct" [2-6,14-321 methods. The indirect method refers to a

technigque which rests on the physico-chemical measurements of work



of adhesion by means of, for example, traditional contact angle
experiments. The direct method, on the other hand, reliesg,
"literally,"” on the measurement of director configuration when the
nematic is subjected in one way or another to an external
curvature stresgs. The direct method is further categorized into
several sub-groups according to how the orientational torque is
brought about. For instance, the "high electric field technique
(HEFT)," with which we are concerned ourselves later, belongs to
the class of direct, external-field type, high field technigues.
Unfortunately, however, the applications of these technigues
have besn often made without paying due attention to the
conditions which make these techniques really applicable.
Consequently, the experimental data found in the literature often
show a large scatter or incosistency, which is so large as +to
force people to think that no concrete (more than an order-of-
magnitude egtimate) information can be drawn f£rom measurements of
the anchoring strength. One of the purposes of this chapter is to
ghow that this is not at all the case, and if an appropriate
technigue is used under a controlled condition, data on the
anchoring strength can be a gquite significant source of information
on which the nature of a nematic interface is faithfully projected
ag originally conceived. Below, we shall review typical methods of
anchoring strength measurement with a special emphasis on the
conditions which are needed to be met for these techniques to be of

practical utility; for HEFT, see the following sections.

T.2,.1 Indirect method

This type of technique consists in the comparison of the
interfacial tension when the director is aligned parallel or
perpendicular to the easy axis. As fully discussed in Chapter 4,

the interfacial tension ig in general dependent on the orientation



of the director at the interface, and we can express it as r{nj),

with N being the director at the dividing surface; in the case of
a planar interface between a rigid solid and a nematic liquid, the
dividing surface can be taken at an arbitrary position without
affecting the definition of the anchoring strength.

A. Principle

Based on the Rapini~-Papoular type interfacial tension, i.e.
r(N) = 7o + Ar(n)

1
= To * > E,[1-(N+n 2], (7.1)

one readily obtains a formal expression of the anchoring energy:

Ea = 2y (n/2y - v{0)1, (7.2)

where 7r{(n/2) and 7{(0) dencte the interfacial tension when the
direétor is set parallel or perpendicular to the easy axis N,
Therefore, it appears that if y(n/2) and r{(0) are known, the
anchoring energy Ea ig automatically calculated via Eq.(7.2).

The next step to follow is the evaluation of the relevant
interfacial tensgions by means of the use of the Girifalc¢o-Good~
Fowkes relation [see Section 5,11, 1In order to simplify the
argument, let us here consider the <c¢ase in which only the
dispersion force is acting between the solid and the nematic. 1In
the literature {7-13], it is tacitly assumed that the interfacial

tension v{(N) can be written in the Girifalco-Good-Fowkes form,
TNY = 74+ (M) - 2[rgr (m)1/2 (7.3)

even when the director N differs from the easy axis N where Tg

e!
and Ty are the "surface tensions” of the so0lid and the nematic,
respectively, and the last term represents the work of adhesion at

an arbitrary director N [see the foot note on the next pagel.



Then, putting Eqg.(7.3) into Eq.(7.2), we £ind

B, = 2{rgl’% - (/¥ 22 - 2(rgl/2 - 022,

(7.4)
When there exigt contributions from other types of interactions,
they must be summed together to vield the anchoring energy.

This is the fundamental formula for the indirect physico-
chemical technigque for estimating the anchoring energy at a solid-
nematic interface. The remarkable feature of this technigque isg
that the only ingredients of the theory are the surface tensions of
the s80lid and the nematic phases, when they exist independently.
When, in particular, the anisotropy of the nematic surface tension,
Z&TL=Ylj1t/2)-YL€0), is small, Eg.{(7.4) approximately reduces to

ro ()2 - 172

E ~ 2 Ar . (7.8)
a TL(0)1i2 L

This equation shows that when Th>TS’ the nematic should align at
the solid surface in the same direction as at the free surface, and
when ?L<1fs, it should align in the perpendicular direction. This
is in its spirit similar to the Creagh and Kmetz empirical rule
described in Chapter 3,

Note: Strictly speaking, it is not allowed to regard the work of
adhesion for an arbitrary alignment as a work needed to
reversibly geparate the golid and the nematic in which the
director i8 uniformly aligned. This follows from the very
definition of the easy axis; that is, a uniform alignment is
possible (except for some metastable orientation, if any), if
and only if n//i\e. So, the right~hand side of Eq.(7.3) is
net an eguilibrium quantity, while the left-hand side 1is.
This pitfall results from the use of y(N), treating it as a
function which can be taken independently of the bulk state,

This point is often neglected in the literature.



Naemura [9,10] applied these formulas to a wide variety of
surfactant-coated substrates in contact with a nematic liguid
crystal, and favorahly compared the resultant anchoring energies
(on the order of 10”2 J/m%) with those directly measured with the

Freedericksz technigque (see below).

B. Consideration of validity and suggestions

The fundamental formula of this method, Eq.(7.4), 1is not a
rigorous thermodynamic formula to be generally satisfied by
interfacial tensions of nematics. But, as it stands, it is an
approximate eguation based on a number of assumptions whose
validity should be carefully assessed.

Cne of the most serious shortcomings of this method is the use
of Girifalco-Good-Fowkes semi-empirical formula, which, as
mentioned in Section 5.1, can be used with certain confidence only
when an error of a few 10"3 J/mz iz permissible. As indicated
above, however, the anchoring energies are usually on the order of
10'5 J/mz. In view of these estimates, it might appear almost
senseless to calculate anchoring energies by means of such physico-
chemical formulas as Egs.(7.4) and (7.5).

Nevertheless, the truth may not be this bad, because in
Eq.(7.4) the anchoring energy is given as a difference between two
formally similar terms. So, it is reasonable to expect that these
errors (resulting from the assumption underlying the Girifalco-
Good~Fowkes formalism) would cancel out to a large extent, leaving
much less error in the anchoring energy. However, analogous to the
interfacial tension itself, it is hardly possible to asgess how
perfect this cancellation will be achieved. As_pointed out in
Section 5.1, the Girifalco-Good-Fowkes theory neglects the
variations in structure from one interface to the other. In this
respect, Eq.(7.4) can be expected to in general lead to a better
result, if one estimates +the £first and the second terms for

interfaces at as similar as possible conditions. As regards



Eq.{7.5), however, this condition can be restated as that it is
important to use a good value for the surface tension anisotropy
for the nematic free surface; this is not at all an easy work in
itself.

¥e should also point out another drawback of this method,
which is in a sense even more serious than that mentioned above.
If the ﬁirector at the solid-nematic interface aligns in the same
direction as that at the nematic free surface, we obtain the

following ineguality from Eqg.{7.4) and (7.5):

This indicates that the anchoring energy at any solid surface can
never exceed the value at the free surface, This is physically
unreasonable, as will become clear if we imagine a solid which
exerte a strong torgque as to enhance the alignment at the free
surface. This paradox arises from the underlying assumption of the
Girifalco~Good~Fowkes theory which does not properly take account
of the anisotropic nature of the nematic liquid.

In view of all of these, the indirect physico-chemical
technique appears t¢ be only of qualitative or heuristic
significance, as drawing an easy picture of the surface-induced
alignment in terms of a language familiar to surface scientists.
As a quantitative method for measuring anchoring strength, it is
almost fatal that we cannot egstimate the uncertainty invelved in
the resulting anchoring energies. On the other hand, as a theory
for predicting the alignment, it is still empirical containing too
many unjustfiable assumptions. This kind of technigque would be
useful only after the nature of the anisotropic part of the

interfacial tension is fully understood.



7.2.3 Direct methods of measuring the anchoring strength

This type of techniques measure, in one way or another, the
effect of s80lid substrate on the director profile near the
interface. In this context, the wall effect manifests itgelf only
when the director is deformed from its equilibrium configurations.
Since the nematic liquid crystal can he made to deform in many
ways and no 1liquid crystal is £free from its boundary, every
possible deformed configuration of nematic director contains more
or less information as to the nature of the solid boundary. Thus,
corresponding to all of these phenomena, there can in principle be
innumerable methods for estimating the anchoring strength.

The most important characterisgstic of a gocd measurement method
is that it allows for accurate, unambiguous, and easy determination
of the property in gquestion, preferably in wide variety of
different systems. The development of experimental techniques for
measuring the anchoring strength is actually a history of selecting
director configuration that meets these requirements. And, we have
now a rather large stock of such attempte ag listed in Table I.

The earliest direct measurement of the anchoring energy was
performed by Kleman and Williams [2] through the measurement of the
width of a gsurface disclination line: The surface disclination line
they observed was an intersection between the substrate and a wall
gigularity of director orientation (like a Neel wall in
ferromagnets), and the region on the substrate where the director
igs migoriented from the eagy axis is 1limited to inside the
disclination 1line, The width of the surface disclination line is
determined by the compromise between the bulk and the surface
elastic energies; the former decreasges as the disclinatien 1line
becomes thicker, while the latter increases. By an approximate
calculation, the optimum thickness h of the surface disclination

line has been expressed ag [2,4-~6],



h ~ n(dK/EY2 = ncaapt/2, (7.7

where d is the cell thickness, and K the Frank elastic constant; in

the case of a Neel wall, E_, and de are the azimuthal anchoring

a
energy and the extrapclation length, and in the case ¢f a Bloch
wall, they corresponds to the polar anchorage. According to
Eq.(7.7), the anchoring energy and hence the extrapolation length
can be obtained, if the thickness of the surface disclination is
known for a cell of known thickness.

Such a surface disclination is shown to be thermodynamically
stable only when the cell thickness d is smaller than de' Hence,
h i3 in reality not greater than the extrapolation length.
Therefore, since the resolution of a polarizing microscope is at
best a few micrometers, quantitatively meaningful measurements can
be made, only when the anchoring energies are smaller than than
10_6 J/mz. As the anchoring energies of solid-nematic systemsg of
practical significance are mostly arocund 10'5 J/mz, this presents
a severe restriction on the applicability of this method.
Furthermore, since the production of surface disclination 1lines
cannot be satisfactorily controlled, this technique hasg not gained
a popurality as a practical methed for measuring the anchoring
strength.

Other direct methods listed in Table 1 have been developed
more systematically to allow measurements in uniformly aligned
samples with wider range of anchoring conditions. Below, we shall
focus on two prototypical techniques, (1) wedge-cell technigue, and
(2) Freedericksz technigque as, respectively, representing the

geometry-type and the external field-type techniques.
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A. Characterigtic lengths in a surface-aligned nematic layer under
an external filed [29]

In order to make a unified treatment of these techniques, it
is helpful to first consider the characteristic lengths governing
the director configuration in a surface~aligned nematic layer in
equilibrium under an external field.

Let us consider a nema-

tic layer confined in between L ]

a couple of solid substrates | ® j;;

[Fig.7.11. In view of later d b’/ f electric field
application to the high elec- //

tric field techniqgque (HEFT), | ﬁ:;

we imagine that an external i E
electric £ield 1is applied

perpendicular to the solid- FIG.7.1. Director deformation under
nematic interface; however, an electric field.

the <case of magnetic field

can be treated in completely the same manner. Further, we assume

that the deformation is essentially planar, that is, the director
is always lie in a plane determined by the easy axis and the
substrate normal.

Including the effect of electric field along with the surface
contribution from the lower and the upper substrates, the
thermodynamic potential of the system can be written, per unit

area, as
1 (4 2 2 ao\ 2
Q= Qo + - {(Klsin B + K3cos @))(—-)
2 o dz
DZ
(816052@ + azsinze)

w

dz + 74(Bo) + 74(8y),

(7.8)
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where Ki and K4 are the Frank elastic constants for splay and bend
deformations, &, and £, are the dielectric constants for field
directions paraliel and perpendicular to the director,
respectively, and D denotes the electrical displacement, which is
shown to be constant throughout the nematic. To(@o) and Yd(@a)
are the interfacial tensions for the lower and the upper solid-
nematic interfaces, each regarded as a function of the polar angle
of the director at the interface. Here, we consider the case of a
positive dielectric anisotropy, i.e., A£ﬂ=$i~€2 >0, so that the
director is forced to align along the electric field. Except
for the presence of an electric field, this expression is
identical with what we have studied in Section 4.6, This is a
thermodynamically meaningful representation ¢f the thermodynamic
potential in Gibbs' @gense, if the interface director is
interpreted as the director one would have when the bulk director
configuration is extrapolated to the interface.

The equilibrium configuration of the director in the "bulk"
nematic 1is the one that minimizes the thermodynamic potential for
fixed boundary conditions. Then, applying the variational
calculus, we can obtain the Euler~Lagrange equation which specifies

the equilibrium profile:

d 2 L 4 D%
dz dz a6 2(61008 8 + szsin 8.
{7.9)
and the boundary condition at z=0 and 4,
dy A(0s) an
—0—%" = (K;8in%0 + Kjcos?6)— (7.10)
40 : dz -y r
z=0
d7r (9 ) ae
—gdd” . -(Klsinzﬁ + K3c032@)~*“ (7.10)
46 dz
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These are the fundamental set of eguations from which all the
properties of the director configuration (in the bulk) can be
deduced, A detailed analysis of these sgquations will be carried
out in the next section in relation to HEFT,

For the purpose of gqualitative discussion, let us adopt the
one-constant approximation (K1=K3=K) and assume that the
dielectric anisotropy is small (slﬁvezﬁva). Then, Eg.(7.9) can
be reduced to

K 62@ DZAE in2® (7.11)
—% = —u 8in . .
dz 28

This equation clearly shows that in an electric field with D, the
director tends to reorient along the field direction over the

distance dc given by

a, = e(&/Ae)/ ?/p. (7.12)

In other words, the region where the director is appreciably
different from the field direction is practically localized within
an interfacial layer up to d_, from the solid surface. This is the
"electric coherence length" for the director. In the case of a
magnetic field, a c¢oherence length can be similarly defined as
dcﬂx(K/ZSx)IIZ/H, where H denotes the magnetic field. The
electric or magnetic coherence length is a characterigtic length
of the system which describes the response of the nematic to these
external field.

In the absence of the external field, it ig «clear {[from
Eq.(7.11)]1 that the director rotates with a wuniform gradient
[@e(a)-@e(oyaxa. Here, @e(O) and @e(d) are the angles of easy
axis at the lower and the upper boundaries, respectively; they are
not in general different from each other, And 4 is a measure how
strongly the system opposes to nonuniform rotations induced by,

gay, an external field. This is another characteristic length of

7 - 13



the system.

The final characteristic length of the system is the
extrapolation length de associated with the golid-nematic
interface, This is of course a measure specifying how amenable
the interfacial orientation is to an external stimulus.

Thesge three characteristic lengths exhaust ail the
independent parameters in the system having the dimension of
length. Depending on their relative magnitudes, the behavior of
the director is essentially determined. Owing te the concept of
these characteristic lengths, essential connections among various
techniques can be easily visualized, thereby enabling us to easily

appreciate the validity condition of each method.

B, Wedge-cell technique

This is a typical example of the geometry-type methods, which
introduces a necessgary director deformations by means of geometry
of +the cell configuration or such without the aid of an external
field.

Figure 7.2 shows the cell geometry used in the wedge-~cell
technique, which was originally proposed by Riviere et at.[14]
and later refined by Barbero, et al.{17]}. The principle of the

method is rather simple. () )
- Old
Imagine that we are to mea- k“}

gsure the anchoring strength i { 4

at the lower interface with

an easy axis ©_,(0). In this
technigue, the upper sub- @9(0)/‘ f

strate must be subjected ¢to /ﬂ ‘/
an appropriate surface treat-

ment so that it gives the {4” z ‘0

nematic an easy axis @e(d)

which is distinct from that  FIG.7.2. Cell geometry in the
wedge—-cell technigue.
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at the lower surface, with a sufficiently strong anchoring
strength in comparison with the anchoring energy to measure.
Then, both substrates are put into a ‘"wedge” configuration
gubtending a very small angle (on the order of 10'4 rad) s8¢ that
at each point, the configuration of the nematic director can be
well approximated by that in a usual parallel cell.

The conflicting boundary conditions at the sgolid-nematic
interface amounts to a go-called "hybrid" alignment in which a
gspontaneous deformation of the director exists. Because of the
absence of an external field, the Euler-Lagrange egquation
{including +the boundary condition) can now be interpreted as a
statement of the ¢ontinuity of the gurvature stress along the z-
axis. In the one-constant approximation, the eguilibrium director
profile is given by a linear function of 2z, ag mentioned above,
Therefore, based on the geometrical meaning of the extrapolation
length, we can write the boundary condition at the lower interface
as

8o - QQ(O) 0,(d) ~ Oo

= . (7.13)

dg d

Hence, the angle of the director at the lower surface igs given by

@o = B, + [0,(d) - 0,(001/(1 + d/dy).  (7.14)

This eguation shows that if ©. can be measured as a function of
the c¢cell thickness d, we can in principle obtain da thereof.
Riviere, et al. [14] measured the angle &(o as a functicen of d at
an interface between an obligquely evaporated SiC and 4-hexyl-4'-
¢yanobiphenyl (6CB) E@e(O)*VSO degl] from an optical reflectivity
experiment. And, they found the anchoring energy at about 4X10—6
J/m?.

In Eg.(7.14), it should be strictly noted that the

extrapolation length and the cell thickness is appearing via
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1+d/de. As a result, an appreciable degree of change in the tilt
angle can be expected to cccur only when d4 becomes as small as de.
This fact essentially limits the accuracy of the technique, Put
differently, this technigue requires that the cell thickness be

reduced down to

d ~ 4, (7.15)

so as to assure a good accuracy. Therefore, it will be
experimentally difficult to measure an extrapclation length
smaller than 1 um; the upper bound for the anchoring energy would
therefore be of some around 1077 J/mz.

Measurement of the tilt angle ®o from an optical
reflectivity involves a rather complicated numerical fitting
procedure. Barbero, et al. {[17] weliminated this process by
observing the "overall configuration of the director” by means of
the integrated optical phase retardation experiment. As already
noted in the former chapter, the phase difference R between the
ordinary and the extracordinary rays after passing through a
nematic sample is expressed as

2n (9
R = — An{8) dz, (7.16)

0

where A is the wavelength of light and An(®) is the "effective”
birefringence of the nematic with the orientation angle ® for a
light beam traversing along the z-axis.

Thus, substituting Eq.(7.14) into Egq.(7.16), we can

approximately express R in the following form:
R = A(2n/A)[ 4 + (1~C)de}, - (7.1

where A and C are constants independent of d and de ag defined by

0, (d)
A = f An(@)[0 (d)-8 017! a0,
8,(0)
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C = Anl©,(0)1/A,

Therefore, when R is plotted againsgt the thickness 4, a sgtraight
line is obtained, from the intercept of which with the ordinate
axis, we can immediately £find the extrapolation length. This
property provides us with a very easy and convincing method for
deducing the anchoring strength. In this case, too, the validity
of the technigque is fundamentally governed by the relative

magnitude of the cell thickness and the extrapolation length.

A modification of the Riviere method, in which the eagy axis
at the upper boundary is intentionally changed from cne place to
the other in a parallel cell geometry has been developed by

Komitov and Petrov [151.

C. Freedericksz-transition technique

Another important variation of an experimental technique for
anchoring measurement comes from the use of an external field as
an agent to induce a desired director deformation.

As shown in Chapter 2, when the initial {(uniform) orientation
of the nematic layer is strictly perpendicular to the applied
electric or magnetic field (we are considering the case of Ag>0
and Ax>0), the initial alignment remains to be stable up to a
well defined threshold field strength. And, above this threshold,
the director begins to rotate toward the field direction.

This phenomenon called the Freedericksz transition originates
from the competition between the torgue exerted by the applied
field and that due to the cell boundary. So, it could soon be
suspected that the strength of the anchorage would have some
effect on +the transition. This was indeed first studied by
Rapini-Papoular {19] as early as 1969 in relation to the wall-
effect on the magnetic field-induced Freedericksz transition.

Ls understandable from its origin, the Freedericksz
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transition is expected to occur (between strong anchoring
substrates, i.e. de~0), when the electric or magnetic coherence

length becomes almost comparable with the cell thickness:

do, ~ 4d. (7.17)

Indeed, in combination with Eq.(7.12), this condition yields a
threshold voltage V., ~ (R/Ae)r/? [Hip ~ (K/Ax)“zld]; the
exact formulas for infinitely strong anchoring condition are given
by n(K/Ae) /2 ana mx/x)1/%/4.

Let us now imagine that both substrates are identical and
such that the anchorage is of finite strength with the
extrapclation length de' Then, in view of the obvicus fact that
the nematic director can be freely rotated in the absence of
surface anchorage, it is naturally expected that the threshold
field should be reduced, as the anchorage weakens, Rapini and
Papoular [19] showed that even when the anchorage is not
infinitely strong, the director exhibits a Freedericksz transition

with the threshold field is given by

cot (X "th_y o 5 Je Dth (7.18)
Hepo d Hgpe

where Hipo denotes the threshold field when the condition of

infinitely strong anchorage applies; the corregponding relation

for the threshold voltage follows immediately from the above, when

H is replaced by V. When expanded with respect to de/d,

Eq.{7.18) can be written in a more transparent form:

H
Hy, = —SB°— (7.19)
1 + 2d/de

Hence we see, as expected, that ag the anchoring weakens and/or
the <c¢ell thickness decreases, the threshold field decreases. So

that, if the threshold field is measured for samples of wvarious
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thicknesses, the extrapolation length can be obtained. As in the
case of the wedge-cell technique, this equation alsc shows that an
accurate measurement is possible, only when the Tnematic layer
thickness 1is reduced down to the comparable level as the
extrapolation length. Then, in wview of Eq.(7.173, the

Freedericksz transition technique can be characterized as

a ~ dg ~ dg. (7.20)

Naemura [20,22] observed the threshold field of the magnetic
field-induced Freedericksz transition for layers of MBBA, which
had been homeotropically aligned between substrates treated by
various surfactants. He obtained anchoring strengths on the order
of 10°0~10"5 J/m? by using sample layers with a thickness ranging
from 10 um to 100 um. More recently, however, Yang and
Rosenblatt [23), and Rosenblatt [24] realized the importance of
using a thinner sample cell [to meet the condition in Eg.(7.20)]
in c¢onjunction with a high magnetic field to make an accurate
measurement by means of this technigue. They applied a magnetic
field of up to 100 XG to a few micrometers thick layer of MBEA,
homeotropically aligned between surfactant-treated substrates, and
found values of the anchoring energy about one corder of magnitude
larger than that obtained by Naemura. The results of these studies
indeed show that it is crucial tc meet the requirement expressed
in Eq.(7.20) for making reliable measurement of the anchoring
strength.

However, it should be pointed out that the firgt condition
of Eq.{7.20), is an auxiliary one resulting from the use of the
Freedericksz transition; so that as 1long as one uses this
technigue it is automatically satisfied. On the other hand, the
latter condition is the true criterion which assures the wvalidity
of this technigque. Thus, it is expected that by relaxing the

condition dfwdc, we can devise a more versatile method for measu-
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ring the anchoring strength. Actually, there have appeared seve-
ral attempts [27,28] to obtain the anchoring energy £from the
analysis of the director deformations in the field region well
above the threshold of the Freedericksz trangition. 1In this case,
there is no restrictions on the sample thickness, and one c¢an
freely achieve the second criterion dc~de by using a sufficiently
gtrong field. This is the idea of the high field techniques
developed by Yang [271, and van Sprang and Rartsen [28]. 1In these
techniques, however, the director deformation is expressed by a
very complicated function of the field strength which implicitly
involves the anchoring strength. Consequently, a laborious multi-~
variable numerical fitting procedures has to be performed to

extract the anchoring strength.

D. Summary and comparison with HEFT

In the case of a geometry type technique, the necessary
director deformation is brought about by a geometry £factor
characterized by the length d. In the external field type
technique, it is specified by the coherence Jlength dc‘ These
facts show that accurate direct measurements of the anchoring
strength entail that the source of the desgired directoer
deformation should invariably have a characteristic length
comparable with the extrapolation length to be determined. This
condition ig directly of indirectly a decisive factor for
determining the performance o¢f a particular technigue.

The high electric field technigue (HEFT) developed by the
pregent author (291 is a substantial sophistication of the
conventional high field technigues [27,28]. By intenticnally
using a very "thick" sample, with a view to completely decoupling
the effect of 4 and d, on the directer configuration, it is made
possible to measure the anchoring strength in a simple, vyet

unambiguous manner which does not require any numerical £fitting
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procedure asg in the conventional techniques. This is the
congseguence of the fact that HEFT can be c¢onceptually more
appropriately classifled as a geometry-type technigue rather than
as an external field-type; indeed, the reciprocal of the field
gtrength acts like the cell thickness in the wedge cell technique.
HEFT is reasonably insensitive to uncertainties both in material
parameters such as the elastic constants and in the cell
thickness, and 1is possible to determine the entire functional
form of 7 {(©).

Finally, important <characteristics of various "direct”

techniques are summarized in Table 2.

TABLE 7.2 Comparison of typical "direct™ technigques

for measuring the anchoring strength

Wedge~-cell Freedericksz High field HEFT
transition
Anchorage polar both polar polar
de(min) 500 nm 10 nm 10 nm 10 nm
E, (max) 107° J/m? 1073 J/m? 1073 J/m? 1073 J/m?
Sample
complicated complicated easy easy
Preparation '
Data
easy easy complicated easy
Analyeis
Oblique possible in principle in principle possible
Alignment possible possible

Ea(max): Largest anchoring energy measurable by the technique.

de(min): Smallest extrapolation length measurable,
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7.2 The high electric field technique
7.2.1 Intuitive account of the principle

The high electric field technique (HEFT) provides us with a
means to accurate and straightforward method to measure the polar
anchoring strength at a solid-nematic interface. As it is based
on the very fundamental property of the Frank elastic thecry, it
scems appropriate here to give an intuitive comprehensible account
of the measurement principle before geoing into the detailed
mathematical analysis of HEFT.

To i{llustrate the point, 1let us first consider a semi-
infinite nematic liguid crys-~
tal bounded by a substrate
under an electric field
applied perpendicular to the D FIG.7.3. Director deformation
in an electric field; D is the

interface [see Fig.7.3]. Ve
[ 9 ] electrical displacement,

imagine that the nematic
assumes a uniform planar Fd
alignment in the absence of

the electric field,.

///}64/c/{~a_.__.__.”u
e

11/
1/
11/

T

subsirgie

In the presence of a
finite electric f£ield, the

director tends to rotate

toward the field directicn as one moves from the interface into
the bulk nematic. So, ©@(z) is always an decreasing function of
2, which {exponentially) approaches 0 as gz-»00, The actual

director profile is determined by the condition of minimum
thermodynamic potential Q [c¢f. Eq.(7.8)1, which results in the
Euler-Lagrange eguation for ©(z) supplied with an appropriate
houndary condition expressing the torgue balance at the interface,
Eqs.(7.9}) and (7.10). For the present purpose, however, it is

sufficient to note that the integral in Eq.(7.8) can be

7 - 22



transformed to the form DXJIO6(L)1, if £=Dz is regarded as a
new variable of integration instead of 2, where JI®(Z)] is a
functional of ©(Z) without an explicit dependence on D. As a
congsequence, & universal function of £, E({), must exist, with

which we can write 9{z) as
@(z)xE{D{z+de)I, (1.21)

where de is a parameter which determines the angle at z=0, i.e.
®s, and may in general be a function of D; as appreciable from
the form of Eq.(?.Zl)’ d, has a meaning of the length of
extrapolation to the point where 0=0. Egquation (7.21) reveals
that the director profile satisfies a simple scaling property for
such transformations as D —> kD and (z+d,) - k“1(3+de). HEFT
resgts entirely on this property.

If the anchoring at the interface is of finite strength, O,
should deviate more and more from @emnfz as the electric field
increases, and how fast it is gives a measure of the anchoring
strength. From Eqg.{(7.21), therefore, it is evident ¢that the
measurement of the anchoring strength essgsentially reduces to the
determination of the extrapclation length de.

In HEFT, we also observe the optical phase retardation R
between the ordinary and the extraordinary rays which a light beam
suffers when traversing the nematic liguid crystal along the 2z

direction. For a light with wavelength A, R is given by

2n ™
R = K“ 0[ neff(G) - Ny ] 4z, (7.22)

where neff(e) is the effective refractive index for extraordinary
light when the director is tilted by 9 from the interface normal,
and R, is the index of refraction for ordinary light. Since Ragf
approaches n, as z—roo, the above integral remains finite even for
a semi~infinite gysgten. Combining Eg.(7.21) with Eq.(7.22), we
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cbtain

1 2n (© g~}
;} ';\“"' { neff(G) - n, ]g‘é—- a6 {7.23)

<

where E"1(®) is the inverse function of E. This is the
fundamental egquation of HEFT,

The important feature of Eq.(7.23) can be seen, if the
anchoring is assumed infinitely strong so that Bes=mn/2. 1In this
case, the integral in Eq.{7.23) becomes a constant independent of
the field strength. Hence, when R is plotted against 1/D, a
gstraight line passing the origin should result. On the other
hand, when the anchoring is of finite strength, the increase of
8o with D also contributes, In order to see the behavior at such
low fields as to induce only a small deviation in 6., it is

convenient to expand the integral in Eq.{(7.23) about D=0:

ag-1l qe,
) — — + g 1, (7.24)

2N
[(RD)o - D —(ng - ng,
3\ d@o dD Dgo

[ B

where (RD)o = %iﬂ)RD, ng the refractive index for extraordinary
e

ray, and the residue £ is of the order of D> when d(de)/dD
vanishes at D=0 otherwise the order of DZ. By differentiating
Eg.{(7.21) with respect to D, Eg.(7.24) reduces, up to 0th order in
D, to

2%
{RD)o - Ef(ne - no)de, ('7.25)

Tt

where de(D=0) is written as de for simplicity. This shows that
when R is plotted against 1/D, the effect of a finite anchoring
strength emerges as a downward shift of the straight 1line from
that corresponding to the infinite anchoring strength.

In congidering the realistic cases of finite thickness
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samples, it is helpful to note that, even in the semi-infinite
case, the essential contribution to R comes from a small region
near the interface which extends over the electric coherence
length dc defined in Eq.{(7.12). Therefore, a finite-~thickness
ligquid «c¢rystal held between a pair of substrates can be expected
to behave like a pair of semi-infinite systems, when the voltage
ACIrOS8S the cell is well above the threshold wvoltage £for the
Freedericksz transition, Vth=n(K1/£S£)1[2, so that the elastic

deformation is well localized near the substrates. Therefore, we

have
Ri{finite) =2XR(gemi-infinite), when V >»> Vth‘

Since the zero-field retardation of a planar c¢ell with
thickness d is given by Rom2nd(ne—n°)/A, and D is proportional
to the product of the capacitance ¢of the cell C and the applied

voltage, we finally obtain

R Io

B

-

Ro Ccv

]
N
[« ‘mﬂh

when V >» Vth’ (7.26)

for a sandwich-type planar cell, where I, 4is8 a proportional
constant which depends only on the bulk parameters of the ligquid

crystal and the cell geomet-

ry. Thus, we can directly infinite strength
determine the extrapolation R/FQ
length de from the plots

finite

between R/Ro and 1/CV, This strength

gituation is schematically

illustrated in Fig.7.4. In Pid
order that this method be of _2de.” 1/CV

practical utility, however,
the two somewhat conflicting R

FIG.7.4. Schematic illustration of
conditions, V. > Vi, and R/Ry vs 1/CV plot.
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n/2-0s<<1l, must be met at the game time. This is achieved by
choosing the cell thickness d in such a way that d))de.

Ls one may have noticed, we have so far made no use of the
torgque balance eguation at the interface; that is, we have‘only
worked with the bulk equation and have been naturally led to the
concept of the extrapolation length. This 1is what we have
experienced in Chapter 4, in developing the surface thermodynamics
of a nematic interface. From a purely macroscopic view point, the
extrapclation 1length de is a more fundamental concept than the
anchoring energy. The primary parameter that the pregsent method
gives directly is the extrapolation length, not the anchoring
energy. Thig situation is completely analogous to the cases of

other "direct"” techniques for measuring the anchoring strength.

7.2.3 Mathematical analysis of HEFT

In this section, we shall present a complete mathematical
formulation of HEFT following the route drawn in the previous
section., We will then examine the possgibie uncertainties involved
in the resulting extrapclation length and anisotropic part of the
interfacial tension due to errors in the material parameters and

the cell thickness.

A. Formulation

We begin with the expression of the thermodynamic potential
Eq.(7.8) for a nematic sample of thickness 4. We assume that the
iower and the upper interfaces are identical, having the common
eagy axisg @e and interfacial tension r{(08s); so that, we have
T(06)=75(06)=74(04) and Bo=06,.

Integrating the Euler-Lagrange eguation Eq.{7.8) once, we

obtain

2 UL p2
(E;sin Q0 + Kycos 0)— - ) )
dz € ,cos 8 + £,8in )

const.
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Since the system under consideration is obviously symmetrical
about the mid-plane at z=d/2, the gradient of & disappears at
this point. Then substituting z=4/2 in the above, we can readily

evaluate the constant of integration to give

(d@)zu A gD? sin?@ - sinZ@_
az/ K& ,2 (1+xcosze)(1~asin2@)(1:acosz®m) :

(7.27)
where o = Ag/€e, and k=(K4-K,)/K,. The angle of the director

at the mid plane is denoted by @m.

The director deformation in the nematic layer is here
optically detected by way of the measurement of the optical phase
retardation R. In Eq.(7.22), where R is defined, the effective
refractive index for the extraordinary ray should be specifically

written as

Neee(®) = n /(1 - vsin?0), (7.28)
where

- 2 _ 2 2
¥y =(n ng )!ne . (7.29)

e

Then, combining Eqs.(7.22), (7.27), and (7.28), we obtain

E..._ _ 1/2 ...E..:..........l @o 1“V+(1“V)1/2
= 2(K,/8) 5 5173
Ro 4aDn @ 1l-vsin B+(1-vsin“0)
m
(1+xcosz®)1/2(1—asin2@)1/2(1—asin3@m)1/2 2
x 5 -5 177 sin“® 4e.
(sin®® - gin @m)

(7.30)
Here R°:2nd(ne~n0)/A is the value of the retardation of the cell
when the director assumes a uniform planar alignment.
As the applied veoltage V is increased above the Freedericksz
threshold, the elastic¢ deformation inside the nematic tends to
localize near the ligquid crystal-wall interface. We assume here

that the cell thickness is chosen in such a way that there exists
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a substantial range of voltage satisfying

d >>d, > 4 (7.31)

er

where d. is the electric coherence length {cf, Eg.(7.1231. The
condition d>>de insures that

the finitenegs of the ancho~

/e s T T T T T
ring strength does not in-

filuence the director configu-

ration at veltages around the ®
threshold voltage of the @=05
Freedericksz transition V., woos
{=71(K1/A8}1/21. Further- i ]

more, when d))dc holds, the

0 1 1 i 1 ]
nempatic director behaves 0 i 2 3 4 5 6

V7V,

almost like a semi-infinite

liquigd crystal in contact v I i
. ) FIG.7.5. Tilt angle at the mid-plane
with the substrate. Then, in of the cell as a function of the

this case, we can safely set applied voltage.

@mmo in Eq.(7.30). Numerical
calculations of @m based on Eq.(7.27) shows that when V exceeds
6Viy- ©, becomes smaller than 10”3 [see Fig.7.5].

In order to transform Eq.{7.30) to a more workable form, we
should note that the electrical displacement can be related t¢o the
applied voltage by

b = CV/S, (7.32)

where € and S are the capacitance and the electrode area of the
nematic cell, respectively. Then with ®m=0, we c¢an rewrite

Eq.{7.30) and the boundary condition Eq.{(7.10) as follows:

a7 (06) K, CV (1+kcos?@,)1/2
40, ) n:; *E (1-asin?@,)1/2 sinQe. (733

where £=( sls/d)Xn(KIIAS )1/2;
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R 3
—— oz e I(a,K, V80,
Ro CcvV
where
I 6. z.f@° 1-v+(1-y)L/2
o,K,V; = -
© LY P 1mvsin28*{lmvsin29)1/2

X(1+mc0328)1/2(1-asin28)lfzsin@ 4.

(7.34)
These constitute the fundamental set of equations for HEFT.

The linear relationship between R and 1/CV as noted in the

previous section can be derived by substituting
1 2
T(Bo)= 5 Ea{a,— @e) , (7.35%)

into Eq.(7.33), and expanding Eq.(7.34) up to first order in
(@—@eh

_E_ i} li; _ Klsxn 99 + K3c052®Q
R(O) CV Ead
k d
s — . 8, (7.36)
cvV d

where R{(0) denotes the retardation in the absence of the electric
field [equal to Ro if @e:n/ZI, and k is a constant defined by

E1(a,k,v;0,) 1-vsin®8 +(1-vsin?e )1/?
72 . (7.37)

- e

§in@ 1-v+(1-v

Equation(7.36) has just the same form as Eq.(7.26), and shows that
when R/R{0) is plotted against 1/CVY, a straight line results with
the intercept at ~2de/d. The present egquation is however not
restricted to the planar alignment, but equally applies to chlique
alignment. This is, in fact, an analogous situation to that we
encounter in the wedge cell technique in which R is linear in the

cell thickness. Hence there is a good correspondence hetween the
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c¢ell thickness in the wedge cell technique and 1/CV in HEFT.

The original set of equations, Eq.(7.33) and (7.34) also
provide a means to determine the functional form of 7 (0,)
without assuming any a priori form as Eq.(7.358). Imagine that all
the bulk parameters are known. Then, 1if the retardation and the
capacitance are know as functions of the voltage, Eq.(7.34)
uniquely defines the functional relation between © and V. Next,
using Eg.(7.33), we can obtain d7/d8,. Finally, we must recall
that this procedure is valid only when the effect of f£inite cell
thickness and that of finite anchoring strength are substantially

decoupled by the use of a thick enocugh cell.

B. Estimation of systematic error
To examine how seriously the uncertainties in material
parameters affect the estimate for ®, and the resultant

interfacial tension, we note firgt the following approximate

formula:
1 (2-a) /224 p)1/2
I(a,k,v;0s) ~ - (1 - cosBy,)
7 1 + 3v/8
1 3 1 1 2
X[1 ¢ ~ ( =y = + J(1 =~ 2c088, -2¢co8” @401,
3 & 2= 0 2T K

(7.38)
Using the above equation, we can readily show that the error in
G can be written as
1 8o 6 K

80 ~ - - +
° 3 (2-a)2 (2+1)2

3
- =8y lgin2®e
1

- SIRCV/R(Mk1/sinPo.
{(7.39)
This indicates that the error in ®. due to uncertainties in the

bulk parameters becomes most serious when @o*vn/4} The absolute

7 -~ 30



value of the error, however, remaing at most a few degrees, even
when a's involve errors as large as 0.1. In particular, since ¥
itgelf is usually smaller than 0.2, this result shows that for the

present purpose, only a very crude value for V is needed.

7.3 Experimental determination of 7(8,)

The functional form of the anisotropic part of the solid-
nematic interfacial tension has long been a matiter of considerable
debate{ 33,341, since Rapini and Papoular [19] postulated a sine~
function dependence. However, no concrete experimental support
or objection has been presented, due largely to the technical
difficulty associated with directly determining the interfacial
tension when the interface director is substantially deviated from
the easy axis.

By applying HEFT, we have for the first time sgucceeded to
experimentally determine the complete functional form of the
interfacial tension for an interface between obliguely evaporated
3i0 and 5CB. The result is mostly in support of the Rapini-
Papoular form, but there remains a small discrepancy which cannct
necesgsarily be attributed to experimental error, requiring' the

introduction ¢of higher order terms.

A. Experimental

The Si0 film, which may also serve as an insulating layer,
were vacuum deposited to 1000 A thickness on a pair of NESA-coated
glass plates at an angle of 60 degrees from the substrate normal.
The 1ligquid c¢rystal 5CB assumed a uniform planar alignment in
between these substrates.

In HEFT, the choice of the cell thickness is crucial to
asgure its validity as emphasized in the previous section. If we
take, for example, K;=5X10"'2 N and E,=10"° J/m%,  the

extrapolation length becomes 0.5 um. So, in order to ensure a

7T - 31



substantial range of vwvoltage satisfying d>>dc>>de’ the cell
thickness must be larger than 50 um: too thick a sample,
however, may cause an experimental difficulty in the case of a
planar cell, because the director relaxation near the Freedericksz
transition becomes increasingly slow with the c¢ell thickness,
thereby making it difficult to establish a uniform distortion
throughout the nematic. here, we fabricated a sandwich-type cell
using a 50~um~thick polyester spacer, and the actual cell
thickness was measured to be 56*1 um from the optical
interference spectrum. In order to allow for simultaneous
capacitance measurements, the transparent electrodes were etched
in an appropriate shape to overlap only through the nematic ligquid
with the area of about 7X7 mmZ. The cell was vacuum-filled with
RCRB in the nematic phase and then placed in an electric oven to
maintain the temperature at 0.230%0.001 K below the clearing
point (308.45 K). The retardation was measured with the same
transmission-type automatic ellipsometer which can resolve a
retardation down to 16“5 rad. The block diagram o¢f the
experimental system is shown in Fig.7.6.

A sinusoidal voltage
(1033 Hz) of up to 150 V . To tock-in amp. Le cell
was applied to the cell, and A4

Anaiyzer Laser

the retardation and the capa-
¢itance were measured ag fun-

cticons of the voltage. Since

the critical slowing down was

v Capacitance

quite significant near the
Freedericksz transition, the o ,
FIG.7.6. Experimental arrangement
voltage was, there, scanned for retardation and capacitance

. measurement.
at a rate as low as 1mV/min. v en
In order to evaluate the effect of electronic current within the

nematic, the resistance of the cell was also monitored throughout
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the measurement. However, we did not notice any anomalous
behavior, and the resistance remained over 100 MQ even at the
highest voltage. The texture of the nematic liguid under high
electric f£fields was also examined with a polarizing microscope;
the field of view remained uniformly dark between crossed
polarizers, merely suggesting a gquasi-homeotropic alignment along
the field direction. Because the power loss in the nematic is
presently at most 0.3 mW, the concomitant rise o¢f the sample
temperature is expected to be less than 0.01 K for the present

cell geometry.

B. Results

In ¥ig.7.7 shown are the retardation and the capacitance as
functions of the applied voltage., A clear Freedericksz transition
occurred .at Vthw0.573¢0.093 V, and the retardation decreased
steadily with the vol-

|IT‘E ¥ L3 T YT T L I-OQTIT}
tage. However, as shown
in the inset of the g — \ woo o000 000000 -
oD

figure, the retardation 1 {#ﬂj/r$

08t "
disappeared continuously o &5 ]
at a Ffinite voltage x 0.6} M{; 0.01F . o

fhrmrermremerees (e e Qrem \. o.
around 100 V. This go4t \ < | .. g
>k .-

indicates that at this O :

0.2 - 1] 2 S ) :1:1&;_._
voltage, the entire ~., o 10

- . - - O " bbbt d r fd S.Itf?'...-!.NAAALAAAi
nematic inc¢luding boun e 10° o' 0%
dary layers was oriented voitage (Vrms)
along the field direc- FIG.'?.'?. Typical changes of the
. . ) . retardation R and the capacitance C

tion. This is the first with the applied voltage.

experimental demonstration of the saturation transition predicted
by several authors [35-37].
The change of the retardation was always reversible, and no

hysteretic behavior was observed up to saturation within the
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experimental error. This implies that the anchoring energy
function is monotonically increasing function from Bo=7n/2 to 0.
The effect of finite anchoring strength c¢an be clearly
vigsualized by plotting RCV/Ro versus the applied voltage
[Fig.7.8]. Here, we see a plateau from 1.5 to 10 V, corresponding

to d>>dc>>de' followed by a

gharp decrease at higher vol-

. 7 1

tages. This shows that the ’“50~ ..

finite ancheoring effect sets §:4°’ s .""""“"um"u

in at around 10 V. in order T ¥f . )

to determine the extrapola- g 20¢ 2.

tion length, R/Ro is plotted § 10} R

against 1/CV in Fig.7.9. A o - APV S
0 to? 10 i0?

good 1linear relation can be voitage {Vrms.)

observed as predicted by the FIG.7.8. RCV/R, vs voltage plots

showing the onset of the effect of

theory. The experimental finite anchoring strength above 10 V.

resulty are well reproduced
by a straight line intersec-

ting the ordinate axis at (-

2.30%0.05)X10”3 from which 8210
we can cbtain the extrapola- 5 _///
tion length for the §i0-5CB 6 /[
interface as - (// 5V
4t /f/
de = 65 * 3 nm. P "

] - -

= za v ,’)
By using the value of the 2 l f{
splay constant, Kl=2.4X10'12 ”//J/

1 H l 1
N as determined from the O o5 ! 5 27 10°
threshold veoltage, the ancho- 2 ey (e
ring energy is given by Fzé;LB. R/RO.VSJJCV plets. The
intercept with the ordinate gives

E, = (3.7 % 0.2YX1072 g/m2. -2d,/d. d: cell thickness.
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Then, following the procedure described in the former
section, we have obtained the anisotropic part of the interfacial
tension as shown in Fig.7.10. The error bars around the
experimental points represent possible fluctuations due to
S (RCV/Rok), while the errors in material parameters shift all the
points uniformly up or down within the region surrounded by the
" broken line. Fig.7.10(b) was calculated by means of a graphical
integration of that shown in (a). This is also the first
experimental determination ¢of the functional form of the
aniscotropic interfacial tension at a solid-nematic interface.
These results show that 7{08,) as well as the anchoring energy
can be determined with a reasonable accuracy, in spite of somewhat

large errors involved in the material parameters.

1 T T —

{a} L {b)

¥IG.7.10.Anisotropic part
of the intefacial tension
+~1 for the 8i0-5CB interface
g ] at 0.23 K below the clear-
/_/ ing point, {a) The clcsed
1 c¢ircles are the experimen-—
tal points; the error bars
/ show the effect of uncer~
{ tainty in RCV/Rgk, and
/ . errors in the material
< ' 1 parameters shift the ex-
/ ]l perimental points uni-
/ formly within the region
/ 1 surrounded by the broken
e lines.

] Q.5 0 i 05 O
e x 2/ a8, x 2/

It is now of interest to compare 7(®,) as determined above

{F/m?)
{Irm2)
N

Vi)
AN

d¥/d6,

.
.
"

with the Landau~de Genneg form of the interfacial tension
Eq.(5.116). For this purpose, we examined the fit of the function

of the form
1 2 1 4
r(g) = ~ E,sin g + - Elsin 8, (7.40)
2 4
to the experimental result, where & = n/2-0,. First, it should

be noticed that, because the experimental dr ©.)/d© sghows a
maximum at a point which is definitely different from n/4, it is
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immediately clear that the first term of the above equation alone
is not enough to satisfactorily reproduce the measured result. In
Fig.7.11, two trial functions incorporating the second term are
shown along with the experimental results. For both functions,
the agreement with the experimental results seems satisfactory,
except that there existas a small but definite discrepancy which
cannot necessarily be attributed to experimental error. Anyway,
this result indicates that, at far as the B8Ii0-5CB interface
interface is concerned, the Landau-de Gennes interfacial tension

gives a good repregentation of reality.

2Xi65 ¥ - ¥ T ¥ T 13 T E] T
o J
E
=
B ]
b ]
3 a”
X} :
™
O 1 i 1 -| i i 1 'l I
0 05 !
6 x2/r

FIG.7.11. Second-order fitting of the anisotropic
part of the interfacial tensicn by the function of

the f ’ .

OFM Y(0)=(E,/2)5in20 + (E4/4)sin0,
(a): E=3.9x10753/m?, E,4=-1.8x10723/m2,
(b): E,=4.1x10733/m2, E,=-1.8x1075J/m?,
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7.3 Temperature dependence of the anchoring strength:
Rubbed PVA and Obliquely evaporated S5i0

Temperature-dependence of wvarious interfacial properties
provides information that one c¢an never reach from the measurement
at & fixed temperature alone. This section is devoted to
theoretical and experimental studies of the temperature-induced
variation of the anchoring strength.

At firgt, we will discuss the implication of the temperature-
dependence of the anchoring strength based on the thermodynamic
theory developed in Chapter 4. We present the experimental
results performed on the obliguely evaporated Si0O~-5CB and rubbed
polyvinylalcohol-5CB systems. Here, again, we £find distinctive
differences between their temperature-induced behaviors; at the
5i0-5CB interface, the anchoring strength is relatively small and
undergoes an almost critical weakening as the clearing temperature
is approached, whereas at the polyvinyvlalcohol-58CB interface, it
is rather strong and exhibits only weak temperature dependence.

The critical exponent describing this anomalous increase near
Tc does not satisfy the thermodynamic criterion derived in Chapter
4; hence, it can not be regarded as a true critical behavior, but
should be understood to terminate somewhere closer to the clearing
point. Based on the Landau-de Gennes model, we show that the near
critical weakening is a manifestation of the surface-induced
discrdering transition at the SiO-8CB interface via the
contribution of the order parameter inhomogeneity de(l). This is
in good accord with the resultes of contact angle and Wall-induced
pretransitional birefringence experiments, and also reveal the

utility of the Landau-de Gennes type phencmenoclogical approach.
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7.3.1 Thermodynamic conseguence of a temperature-dependent

anchoring strength: Energetistic vs entropic alignment

The present argument consists in the c¢omparison of the
internal energy U and the entropy S of the system in the
orientationally deformed and undeformed (ground) states. Let us
shortly illustrate how such an argument proceeds and works by
taking a bulk nematic as an example. For the present purpose, it
is convenient to work with the Helmholtz free energy F instead of
the thermodynamic potential. At fixed temperature, the Helmholtz
free energy of a given volume containing containing fixed number
of molecules seeks its minimum by appropriately changing the
director configuration etc. Writing the difference of a quantity

G between deformed and undeformed states as AG, we have
AF = AU - TAS. (7.41)

Now we consider the process in which the nematic is
transformed from a deformed state (II) with the Frank elastic
energy density £; to the undeformed state {I). Then, according to
Eq.(4.86), we obtain, in this case, an equation for the entropy
similar to Eq.(4.89) as

oK of
AS(II->]) = A(w q) f (.,........d) dz, (7.42)

where q is summed from 1 through 3; in contrast +to Eqg.(4.89),
however, the Frank elastic constant Kq should be differentiated at
constant density o {(since the transformation is occurring at
consgtant V and N). Because of the relation ©=F-Nu, we have upon

negligence of terms higher order than fd'
AF(II=>1) = =~ VE,- (7.43)

Putting Egs.{(7.42) and (7.43} into Eg.(7.41), we can express the

internal energy of the system as
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AU(II->I) = ~ VF_ - A(E-Kq)f (?_f_a) dz (7.44)
- d T aK * .
9T J, a'n

Now we have all +the necessary ingredients for the present
discussion. An cobvious statement as to the alignment in the bulk
nematic is that it occurg in such a -way that the Helmholtz free
energy takes a minimum value at fixed temperature, wvolume, and
orientational boundary condition. Then, according to Eg.{(7.41),
in attaining the equilibrium state, either one of the following
four cases should happen: (1) AU<O and AS>0, (2) AUKO ang
AS<C0O, (3) AU<K0O and AS>0, and (4) AUCO and AS>0. It is
impossible that AU<CC and AS<O. Since the Frank constants are
decreasing functions of temperature (even at constant density),
Egs. (7.42) and (7.44) show that in the case of a bulk nematic,
the second category of the above distinctions applies. This is an
indication that the gtability of the uniform alignment of ¢the
director derives from the internal energy part of the free energy,
while the entropic term disfavors it. This result has a deep
implication on +the origin of the nematic order, and may be
interegtingly compared with the elasticity in other c¢ondensed
media such as crystal solids and rubber materials. Furthermore,
thisg energetistic origin of the nematic order demands that any
theory which place too much emphasis on the steric repulsions
between nematic molecules would fail to appropriately explain the
temperature-induced behavior of the nematics.

Though much space has been spared for the discussion of bulk
properties, we are now in a position to turn our argument to the
interface problems. Let usg consider a single component nematic in
contact with a rigid solid.. In conformity with the alignment at
8i0(60 ) and at rubbed PVA in question, we assume that the
alignment is planar and independent of temperature. We restrict

the attention to the polar anchorage. The Helmholtz free energy
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of the system may be written as
F = Fp + Ay + Mua, (7.45)

where ' denotes the adsorption of the nematic liguid with respect
to the dividing surface. As it is obviously impossgible ¢to
rigorously separate bulk and interfacial properties from a
macrogscopic view point, we have to first gset a basis on which the
origin of the stability of the surface-induced alignment may be
most apprepriately discussed.

Here we <chose to take the dividing surface at the point of
zero adsorption for the nematic phase, i.e. ['=0, and consider how
the c¢hange of interfacial tension associated with the bulk
deformation is energetestic or entropic relative to the reference
buik phase. From Eq.(7.45), we have {(with this choice of the

dividing surface)
AF(II=I) = AF (II~I) + AA7°(II-D). (7.46)

In terms of the surface entropy and the interfacial tension, the

surface excess internal energy is written as
uf = r° + 8%, (7.47)

where the superscript o denotesg the zero adsorption surface.  For
gsimplicity, we assume that the zero adsorption surface is

invariant. Then, from Eq.(4.140), we have
o . .0
I'rY = ¥, + defd' {(7.48)

where the extrapolation 1length d, is measured from the zero
adsorption surface, and 7% is the interfacial tension in the
absence of orientational deformation. Based on the Gibbs
equation for the interface between so0lid and ordinary fluid
[cf. Eq.(4.117)], T 7% <can be shown to be a quantity of the

2

order of fd ; hence, it can be omitted. And from Eq.(4.206a), we
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readily find for the case of a rigid solid~-nematic interface,

g 4
ASZo(II~>1) = - K f.{— -2 . (7.49)
1t4
aT Ky /

Combination of Eqs.(7.48) and (7.49) yields

g 4
AUS(II-»I) = - d_Ff; - TR |~ =% . (7.50)
e"d 1*d aT Kl
fo}

Furthermore, because fd can be written, in terms of the strain at
the dividing surface Co,, as £47K;(Cop/d )%/2 [see Eq.(4.175)1,
Eqgqs.(7.49) and (7.50) can be transformed to
2
C o
ASSo(I1-1) = =B = g (7.51)
2 or . _

AUB(II->I) = 235392 9 E (7.52)
2 oT T

These regults show that in such an event that the anchoring energy
Ea decreases with temperature, the surface entropy (relative to
the zerc adsorption surface) should decrease as the system is
brought from an orientationally deformed to undeformed state.
S8imilarly, the surface excess internal energy is also a function
which decreases as the system is transformed to the ground state.
S0 that, in this case, the surface alignment is stabilized by an
energetigtic agent.

On the other hand, if the anchoring energy increase with
temperature, we c¢an conclude from the above egquations that the
variation in the surface entropy should be positive, thereby
contributing to decreasing the free energy of the total system.
The internal energy, however, may be positive or negative,
depending on the manner in which the anchoring energy increases

with temperature. Anyway, the dominant factor stabilizing the
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surface alignment is an entropic one in this case.

For example, if we consider the surface excluded volume
effect [38]1, [cf. the last term in Eq.(5.19)1, the anchoring
energy 1is proportional to the absolute temperature T. Thus,
Egs.{(7.51) and (7.52) show that the contribution from the entropy
is positive, whereas that from the internal energy is zero. As
this mechanism of alignment take account of the effect of
anisotropic packing entropy, the above observation appears guite
understandable. In analogy with the bulk elasticity, this case
corresponds essentially to the “rubber elasticity.”

As another extreme example, let us consider the macroscopic
van der Waals interactions. In this case, the resulting anchoring
energy is a more or less decreasing function of temperature.
Hence, only the internal energy can be effective in stabilizing
the surface-induced alignment.

As clear from thege examples, a knowledge on the temperature
dependence of the anchoring strength provides us with an essential
ingight into the surface process that stabilize the actual
alignment. Although Egs.(7.51) and (7.52) hold only when the
anchoring energy is measured as a function temperature at congtant
dengity, experiments under a constant pressure is still expected

to be a good source of information.

7.3.2 Anchoring strength at a rubbed PVA-5CB interface

In comparison with the case of evaporated Si0 and 5CB, the
regsults on which will be described below, this interface presents
much lesgs fine structure in terms of its anchoring strength.
¥ithin the experimental error, the polar anchorage at rubbed PVA-
5CB interface can be termed simply as an "infinitely strong
anchorage" over the temperature range very close to the nematic-
isotropic transition point. Accordingly, it is impossible to find

out the functicon form of the interfacial tension, as we have
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succeeded for Si0O-5CB interface. And, unfortunately, there is thus
no room for the aforementioned thermodynamic relations to be
applied.

The preparation and the rubbing condition of the PVA film 1is
the same as that we used for contact angle measurement. And, in
accordance with the thickness criterion resulting from the HEFT,
we had fabricated a 54.4-um-thick sandwich cell, in which nematic
5CB was vacuum-injected. The driving voltage was of sinusoidal
wave with the frequency of 7.43 kHz. This rather high frequency (
at least higher than that we used for the determination of 7y (0,)
at the evaporated SiO-5CB interface) was chosen to avoid the
transient motion of the director at high field, which has not been
taken into account in the "static" theory of HEFT and becomes
quite significant when the anchoring strength is large as in this
case. Because this point is of crucial importance for application
of HEFT to large anchoring strength, we shall add some more words
below.

The theory of HEFT described in Section 7.2.3 assumes the so
called "root-mean-square response” of the director to an
oscillating electric field. Strictly speaking, however, it 1is
only a caricature of reality,
but there is always, however
small, a component which
changes in phase with the AC
field. As long as the effect

of ogscillation to optical
output is linear in the field

strength, no final effect

does appear resulting in the

FIG.7.12. Oscilloscope traces of the
driving sinusoidal voltage (1.033kHz,
retardation and the voltage. 80 Vyng) and the optical signal.
Note the asymmetry of the upper env-
elop of the optical signal.

same relationship between the

However, at high field, where



almost saturati

ogcillating

mean~£field position,

director

on of the

when the field crosses zero.

director

configuration

motion is no longer symmetrical

the
the

eccurs,

about

but is more efficient in the rehound motion

So that, there appears a net optical

effect due to this deviation from the root-mean-square field value

[gee Fig.7.121.

The R/Ros w8 1/CV plots for the rubbed PVA~5CE system are
shown in Fig.7.13 at temperatures T_,-6.47 K and T_-0.437 K.
Clearly, the plots show a good linearity as required by HEFT. The
intercept of the extrapolated curve pass almost perfectly through
the origin. The estimated error involved in the intercept value
is ¢10"4. Then, the extrapoclation lengths are

de = 0.0 2.7 nm, at T = Tc-6.4? K,
and
de = =2.0 2.7 nm, at T = Tc*0.437 K.
axig2 e Te~T = 647 1K
= Te~T = 0.437K .
G e
S 4t
™
m -
2 s
9] 1 1 1 i 1 i 1 Il 4 5 9: 5
02z 04 06 08 Ix10
/ey (€Y

FIG.7.13. R/RO vs 1/CV plots for a rubbed PVA~
5CB interface. Plots are for voltages above
4.5 V.
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The anchoring energies are therefore

E, > 1.8%10°3 a/m2, at T

T.~-6.47 K,

E, > 2.8X10"2 J/m?, at T

#

T.-0.437 K.

These are the largest value ever observed for the solid-nematic
interface. Although there ig a sygtematic shift to negative side
in d, value as temperature is raised, it is not clear at present
that it has something to do with the enhanced ordering at the

rubbed PVA-5CB interface.

7.3.3 Obligquely evaporated S10-5CB interface [30]

In contrast to the rather simple result observed for rubbed
PVA-5CB interface, we have experienced a richer variety of
phenomenon which call for gserious surface-gcientific
interpretation. In particular, as the «clearing point is
approached, the extrapolation length now shows an anomalous
increase, which 1is likely to be considered as a kind of critical
phenomenon.

By means of the thermodynamic and the Landau-de Gennes
theories of the nematic interface, it is actually shown not to be
the case. However, this can be favorably correlated with the
results of contact angle and wall-induced pretransitional
birefringence experiments (Chapter 6) if it is admitted that, at
the obligquely evaporated SiQ-5CB interface, the surface-induced
disordering transition is occurring in the nematic phase. This
presents final clear evidence which corrobrates the distinction

between the rubbed and the obliguely evaporated surfaces.
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A. Experimental

The extrapclation 1length was measured according to the
procedure described previocusly, for a 5CB-8i0 interface as a
function of temperature from the nematic-isotropic transition
point (T,=35.3C) down to 5.2 K below T..

evaporated onto a couple of ITO-coated glass plates at an angle of

Si¢ was wvacuum-

60° £rom the substrate normal in the vacuum of 107 Torr. The
rate of deposition was about 0.9 nm/sec and the ultimate film
thickness was about 60 nm. To allow for the existence of
substantial voltage range satisfying the condition 4>>d_>>d,, we
prepared a rather thick sandwich-type cell by using a 50-um-thick
polyester spacer. The actual thickness of the cell was measured
to be 54+l um from the optical interference spectrum, prior to
filling the cell with the liguid crystal.

The cell was vacuum~filled with the liquid crystal in the
nematic phase, and a good homogenecous alignment was confirmed with
a pelarizing microscope. A sinuscidal voltage (7.43kHz) of up to
150 vrms was applied step by step from 2zero volt, anéd the
retardation and the capacitance were measured and stored in a
micro-computer. The rate of voltage scan was set carefully at
each step (ranging from 1 mV/min near vth to 5 V/min near the
maximum voltage) to ensure quasi-equilibrium condition.

The capacitance of the liquid crystal c¢ell is obtained
directly by measuring the ratic between the applied voltage, which
igs being scanned, and the out-of-phase component of the current
across the sample c¢ell. The loss factor is also monitored by

taking the current component in phase with the applied voltage.

B. Resgults and some preliminary discussion

At all temperatures examined, we observed a well-defined
Freedericksz transition Jjust as shown in Fig.7.7. Such well-
defined Freedericksz trangitions are an indication of the fact
that the pretilt angle was always negligibly small at the 5CB =~
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60° evaporated S8i0 interface [391. We derived the splay
elastic constants at various temperatures from the threshold
voltage of the Freedericksz transition. Ags noted before in

relation to the determination of 7(8s)}, we observed a

"econtinuous" saturation transition at some temperatures near Tc.
: n F i g . 7 . 1 4 i t h e th r e s - " eI e T
hold voltage of satura- Se ' ‘ ' 120 z
. . . i 1 -
tion transition V. , is \\\\\\\ Z
plotted as a function of : . S LI
-
temperature. Firstly,
the occurrence of the | : 18° e
[ =]
continuous saturation » =
P . 160 5
transition indicates, \\\
]
according to Sluckin and | \"40 =
vy
Poniewierski [37], that o2
i {20 =
the Landau~de Gennes U Y
FIG.7.14. Threshold
surface potential ' . ; ; 0 voltage for the
Eq.(5.116) has a nega- 05 04 03 02 081 0 saturation tran-
sition plotted as
tive coefficient for the Te~T {K} a function of tem-—
perature,

fourth order term, or
equivalently negative E, in Eq.(7.40). Secondly, the fact that
the threshold voltage increases with the decrease in temperature
shows that the anchoring energy is also increasing almost in

proportion to V.. [35].

The extrapolation length was calculated at each temperature
from R/Ro v8 1/CV plots by performing a 1linear Jleagt-squares
fitting based on Eq.(7.286). Shown in Fig.7.15 are the R/R., vs
1/CV  plots (V > 4.8 vrms) corresponding to the lowest and the
highest temperatures of measurement. Clearly, the linearity of

both plots is remarkably good, while we can see an inflection for
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the latter plot corres-
ponding to the satura-
tion trangition men-
tioned above. The solid
lines represent the
best-fit straight lines,
and the extrapolation
lengths have been de-
duced from their inter-
cepts with the ordinate
axis. The extrapolation
lengths so obtained are
depicted in Fig.7.16
against temperature and
are also tabulated in
Table 7.3 together with
the splay elastic con-
stant K, calculated from
Vth’ the birefringence
An=ng~n,, and the
anchoring energy E, =
K;/d,.

As discernible in
Fig.7.16, the tempera-
ture dependence of the
extrapolation length
shows quite distinct
features depending on
the range of tempera-
ture. Up to TC—I K, the
extrapolation length is

rather small around 30

R/R,

8)(10-2" L] Tc." T = 5.15 K e
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7

FIG.7.15. R/Ry vs 1/CV plots observed at ()

5.15 K and {(b) 0.043 K below T,. The solid lines
are the best-fit straight lines determined

by the least sguares method applied to points
above 4,8 V.,
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FIG.7.16. Temperature dependence of the
extrapolation length d, at the 5CB~Si0{60°)
interface., The solid line is a theoretical
curve based on the Landau-de Gennes type
mode of the nematic interface.



nm and stays practically constant. However, at temperatures near
the nematic-isotropic transition point, ée is geen to underge a
nearly diverging increase toward Tc' and at 0.043 K below Tc it
becomes sgix times as large as the values at 1lower temperatures,

thereby weakening the anchoring strength.

TABLE 7.3. Results for the anchoring strength and some

other bulk parameters.

TC—T Extrapolation Anchoring Birefringence Splay
{K) length energy const.
(nm) (1073 a/m?) (10712 n)
5.15 35%5 13.7%x2.0 0.156 4.66
3.92 317 14.8x3.6 0.149 4.28
3.00 2817 15.2+23.7 0.143 3.95
2.41 2717 14.72+4.1 0.139 3.71
1.77 373 9,2%0.8 0.133 3.41
1.42 42+ 4 7.6x0.7 0.130 3.23
1.17 45%3 6.8%0.5 0.127 3.07
0.864 49:+3 6.8%+0C.4 0.123 2.88
0.645 54%3 5.8x0.2 0.119 2.71
0.431 63+3 5.0%£0.2 0.115 2.53
0.245 833 2.9%0.1 0.110 2.33
0.114 11713 1.85k0.005 0.106 2.17
0.043 183+3 1.13£0.003 0.104 2.06
0 e . 0.102% 1.972

2 values extrapolated to Tc'
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In order to show up the details near Tc’ the extrapolation
iength is re~plotted versus the logarithm of TC-T in Fig.7.17; the
solid line, also shown in the figure, represents the best-fit

curve, found among the set of critical functions of the form

- - vV
de = A + BI(Tc T}/Tc} , £7.53)
with A=0¢, B=3.41 nm and y=-0,45,. Similarly, the anchoring
energy is found to be fitted by

dg/Ky = =3.20 + 1.08[(To-T)/T 179530, (x 10%n%/3). (7.50)

The presgsent results for the polar anchoring strength at the
5CB-8i0 interface might be most comparable with the results of
Faetti, et al.{32] who meagured the azimuthal anchoring energy for
the same interface. The anchoring energieg they found, however,
are nearly one order smaller than the present ones, but they also
observed a nearly critical weakening of the anchoring strength
toward the clearing temperature. For the sake of comparison, we

have calculated the extrapolation length for the  azimuthal
ZXEOZWU; Py T T T T T YT T 2X|03

anchorage by using the

beast-fit equation for

the anchoting energies

given in Ref.32; the

{nm)
(nm)

absolute value of the i

b
OM

d, (azinutha)

twigt constant at a tem-

perature just below Tc

has been taken from

de {polar)

Bunningr g; g.,]e.' [401! "“‘““..

and their vwvalues at

Clugayaa fogeag o 4 Liaba s 4 4. 4

g
lower temperatures were 10’ 100 e 102
T -T (K)

calculated following the

results of Faetti, et FIG.7.17. Extrapolation length for the
azimuthal anchorageat the 5CB~Si0 inter-
face(solid line}, calculated by using
the results of Faetti et al.
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al.[32}. In Fig.7.17, the azimuthal extrapolation length thus
obtained 1is shown as a function of temperature together with the
present result. Desgpite very different valuesgs of de's for polar
and azimuthal anchorages, we can see that the qualitative feature
of the temperature dependence is guite similar for both cases.
This fact strongly suggests that a single mechanism, regardless of
the mode of anchorage, is indeed responsible for the temperature-

induced softening of the surface alignment.

C. 1Ingights from Thermodynamics

By substituting the fitted expression [Eqg.{(7.54)] into the
thermodynamic relation between the surface entropy s® and the
curvature stress L [Eq.(4.206a) and see also Eg.(7.51)], we

P
obtain

ASB(I->II) ~ 0.88I(T, - T)/TCJ‘I'SLPZ. (7.55)

Making use of the strain Co,, at the interface, we can rewrite the

P
above to give

AS®(I-ID) ~ 0.75X10781 (T, - TI/T 170 %¢co 2, (a/m?e )
(7.56)
Therefore, at the temperature TC~T=O.01 K, the gsurface entropy
increases from its ground state by 1.3X10™% J/m®XK, when Cop=1.
In view of the magnitude of the n-i transition entropy of H5CB as
egtimated from the pretransitional experiments [41}, i.e,, 5X103
J/m3XK, the above value of the entropy increase is equivalent to
a situation that a 30-nm-thick surface laver of the nematic is
transformed from the nematic to the isotropic state. This is
indeed a very large change, which may bhe readily detected in
optical experiments.
Equation (7.56) shows that, as the curvature stregs 1is
applied, the ordering in the nematic liquid deteriorates faster in

the interfacial region than in the bulk phase. And, moreover, the
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degree of deterioration should diverge as T goesg to 'I‘c for any

finite value of Co This is obviously impossible to occur in real

experiments. Thepthcrmodynamic ineguality derived in Section 4.9
indeed requires that, even when the extrapolation length does
diverge, the critical exponent governing the divergence should be
<{~1, <c¢f. Eq.(4.215). The exponent found for the present Si0O-5CB
interface ~0.45 dces not meet this requirement. So, the observed
trend cannot be regarded as a manifesgtation of a real critical
hehavior of the anchoring strength, but we should understand that
the apparent critical behavior terminates somewhere closer to Tc
or there is a point of cross over to a more gingular behavior.

Finally, by an application of Eqs.(7.51) and (7.52), it |is
shown that the increase in the surface excess internal energy
associated with the transformation from the ground state (I) to an
excited state (II) with Cop#O is given by

2
¢
AUB(I-II) ~ —%2 E, + TASS(I~>ID). (7.57)

This is positive and is an even more strongly increasing function
of Cop than the surface excess entropy. And it also exhibits a
quasi-critical increase toward T, in sharp contrast with
T(I-—*II)=(Cop2f2)Ea which tends to vanish as T, is approached.

Thegse resultg c¢learly indicate that the temperature-induced
weakening of the anchoring strength at the 5CB-8i0 interface is
not occurring simply because the anisotropic surface interaction,
which aligns the nematic director, reduces near To- but because
the entropice contribution gets to compensate the internal energy
part more efficlently as Tc is approached. That 1is, in the

vicinity of T the rotational barrier due to the anigotropic

cl
surface interaction is effectively lowered by the entropy increase
asgociated with the rotation of the nematic director. This result

clearly signifies the important role that the ordered structure of
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the nematic interface is playing in determining the temperature

dependence cof the anchoring strength at thisg interface.

D. Calculations based on the Landau-de Gennes model

In order to make a more guantitative analysis of the above
experimental result, a model calculation based on the Landau-de
Gennes theory of the anchoring strength (Section 5.6) has been
performed.

As shown in Egq.(5.169), the extrapolation length is comprised
of two contributions of distinct origin, d,(1) and d,(2): the
former 1is the part which comes from the spatial inhomogeneity of
the order parameter near the interface, and the latter is a term
connected with the direct sclid-nematic interaction. Both of them
are given as a function of the bulk and the surface order
parameters, 9y and go.

In the present experiment, the reduced bulk order parameter
q,, is directly given at each temperature by the birefringence

normalized at the value of the clearing point:
qy = An(T)/An(Tc). (7.88)

In particular, this order parameter can be well approximated by an

expression (as used already in the calculation in Section 5.6),

1 T, -T
qp = ={3 + [9 + 16(1 + £ — }/2)1/2} (7.59)
8 TA-T,
with T;~Tc=0.24 K [see Fig.7.181. It is worth noting that this

representation o¢f the bulk order parameter follows from the
assumption that the coherence length of the order parameter in the

nematic phase be written as

§ = gol(Ti-my/T* 171/2, (7.60)
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So that, it is clear that T: FJY?. R L —

N { Londou~de &
degignates a temperature i \ D s

where the c¢oherence length . \
diverge and hence the nematic . \ \ s
order «ceases to be stable. . |
The present value of T;”Tc is \
about twice as large as that ' \ \
from the ordinary Landau-de
Geannes theory. . \
In view o©of the very .. .
\ .

universal nature of the \\\\\\
L

surface excluded volume e T e

: bk boier 2 mss B T 10
10 10° o o
T.-T {K}

effect and the van der Waals
interaction, we have assumed o T T
FIG.7.18. Temperature dependence of the
. reduced bulk-order parameter, The solid
Woldoed = g,q0, (7.61> line is calculated via Eg.{7.59).
for the interfacial interaction potential. A8 regards the order-
disorder term in the interaction potential, we used the guadratic

form » 2
Wolgo) = ~ggqo + (1/2}ucqo

as before.

Figure.7.19 displays the theoretical curve for d fitted
with the experiment. The corresgsponding temperature dependence of
the surface order parameter is shown in ¥ig.7.20. Although only a
curve with uo=1.5 and ¢g=0.09 isg gshown in ¥Fig.7.19 +to avoid
unnecessary complication, curves with ue in a rather wide range
including 0.9<¢ u £2 can reproduce the experimental results egually
well, provided g, K/gz, and, among others, &c are chosen
appropriately; note, however, that no satisfactory £it can be
attained by using a critical curve with g=0 and u>l. As
understandable from Fig.5.21, as ue is made larger, a smaller Ec
and a larger g have to be chosen to achieve a quantitative

agreement with the experiment. However, since Sc isg known to be
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about 1¢ nm for 5CB
[41], curves with uo>2
can hardly be regarded
realistic, The lower
curve in Fig.7.19 is
representing the contri-
bution from d,(2), and
showeg that its effect is
relatively unimportant
near Tc compared with
that of 4,(1), though
the presence of de(Z) is
cbviously crucial at
lower temperatures. This
suggests that the nearly
critical weakening of
the polar anchoring
strength is esgsentially
effected by the order
prarameter inhomogeneity
coupled with the
gurface-induced orienta-
tional disordering at
the interface,

Because of the non-
critical nature of those
theoretical curves which
fit the experiment, the
cgorregponding surface
order parameter always
remains non-zero even at

the clearing tempera-
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ture. Thig is in accord with the result of Faetti, et al.[32] and
is also in qualitative agreement with the contact angle
experiments [see Section 6.11. In particular, the remarkable
feature of those curves gshown in Fig.7.20 ig that the surface
order parameter falls in a small region arcund ¢.15 at the
clearing temperature, in spite of rather large variations in ue
and g. Furthermore, as Qc=0.27 according to the literature [41],
the above results indicates that Q.~0.04 at T.- And for the
order parameter in the isotropic phase (just above Tc), we find
Qon=0.01. Thege valuesg are in good agreement with those predicted
from the contact angle and the wall-induced pretransitional

birefringence experimentsg in Chapter 6.
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Chaptexr 8

CONCIL.USION

In this thesgis, we have made an attempt to develop a
phenomenological framework for the interfacial orientational
properties of nematic ligquid crystals based on thermodynamic and
statistical mechanical approcaches. The validity of the framework
wvas successfully tested against the resgults of various
obgervations of novel orientational phenomena occurring at the
interface between solid substrate and a nematic liguid crystal. As
a result, it was in particular revealed that the mechanisms of
surface~induced alignment of nematics on rubbed polymer surface
and on obliquely evaporated S5i0 are dramatically different from
each other, in contrast to the conventional expectations.

The interfacial phenomena we have dealt with here are
extremely sensitive to the corientational properties of substrate,
while allowing for gquantitative analysis based on the
phenomenclogical framework. At present, such subtle anisotropic
properties of a solid surface ig very difficult to probe, despite
their importance in preparation of oriented organic f£ilmg such as
LE films. We therefore expect that the present set of the
interfacial rhenomena and the thermodynamic and statistical
mechanical framework will serve as a unique analytical tool
for so0lid surfaces.

Below we shall summarize the main results of the present

study in detail, together with some future perspectives.

In Chapter 4, we have carried out a rigorous extension of the
Gibbs thermodynamics of ordinary liquid interfaces to encompass
nematic systems, The uniaxial anisotropy of nematics was fully

taken into account based on the Frank theory of curvature



elasticity by adopting the director in the bulk phase as the
orientational thermodynamic variable. We showed that the
orientational property of the nematic interface can be completely
specified by the pretilt angle and the anchoring strength. Though
this 1is apparently the same sgsituation as in the heuristic
formalism due +to Rapini and Papoular, the Ilimitation and the
physical bagis of their formalism were clarified, and an
alternative defipnition of the anchoring strength has been
introduced. Based on the generalized Gibbs eguation, the
orientational effects on the adsorption, surface entropy, and
surface energy at the nematic interface were elucidated for the
first time. Thisg shows that any phenomenological degc¢ription of a
nematic interface should involve the influences of the ordinary
surface thermodynamic variables. So that, it is egually important
and meaningful to study not only the direct orientational
phenomena but such indirect surface effects,. Finally, this
interplay between the macroscopic orientation and the adsorption
and the surface entropy has also an interesting implication into
the preparation o¢f organic thin films; that is, if a liquigd
grystal is used as a substrate for a spread monolayer, the
pressure and the orientational as well as translational structure

may be controlled by the orientation of nematic director.

In Chapter 5, rigorous statistical mechanical expressions for
the interfacial tension and the anchoring strength were derived
for an interface between hard solid wall and nematic, by making
use o©of the thermodynamic definition of the anchoring strength.
Though not practically useful, they apparently manifested the
importance of interfacial perturbation of liquid crystalline
structure. Egpecially, by way of a variation principle satisfied
by the anchoring strength, it was ghown that the anchoring

strength diminishes as the orientational order degrades near the



interface. By applying a simple mean-field argument tc¢ the
interfacial tension, we suggested that the contact angle of a
nematic droplet resting at the interface between its IiIsotropic
phase and the gubstrate would be enormously sensitive to the
anisotropic property of the substrate. In view of the
significance of liquid structure near the interface, we developed
a Landau-de Gennes type order parameter theory of the nematic
interface. The interfacial tension, contact angle, and anchoring
strength were obtained as an explicit Function of the surface
order parameter. An expression for the wall-induced
pretransitional bkirefringence was also derived. It was esgpecially
shown that these properties are strongly dependent on the value of
the sgsurface order parameter, vyet in a mutually complementary

manner.

In Chapter 6, the results of the experimental observations of
the contact angle at the nematic-isotropic-substrate three-phase
line of c¢ontact, the wall~induced pretransitional birefringence,
and the nematic-isotropic transitions in thin nematic films were
presented. In particular, the contact angle was observed to
drastically change according to the nature of the aligning
substrate. The rubbed surfaces were found to invariably induce an
acute contact angle or in some cases even complete wetting for the
nematic, thereby showing that the ordered nematic state is more
stable of these surfaces than the isotropic state. On the
contrary, the substrates coated with an obliquely evaporated S5i0
tended to induce an cbtuse angle for the nematic, indicating the
prevalence of 3just the opposite situation. In terms of the
Landau-de Gennes phenomenological theory, this observation demands
that the order parameter at the 5i0 surface be appreciably smaller
than in the bulk, whereas at the rubbed gurface, it should be
rather enhanced. These predictions were indeed confirmed (at

leagt partially) by the pretransitional and thin £ilm experiments.



in Chapter 7, the high electric field technique (HEFT)
developed by the present author for measuring the anchoring
strength was described. Next, we presented the results of the
anchoring strengths measurement for 5CB on the rubbed
polyvinylalcecohol (PVA) and on the obligquely evaporated 8i0Q
gubgtrates. The anchoring strength at the rubbed PVA substrate
was found to be extremely large with negligible temperature
dependence. However, at the Si0 substrate, the anchoring strength
was more than one order weaker, and furthermore showed a gquasi-
critical weakening as the temperature approached the nematic-
isotropic transition peint. Although the possibility of a +true
critical behavior was ruled ocut by thermodynamic criterion derived
in Chapter 4, it could be interpreted as an indication of the
thermal degradation of the surface order parameter on the basig of

the Landau-de Gennes theory.

The results of the above four kinds of experiments could be
congistently explained within the present phenomenological
framework for both rubbed PVA and evaporated 5i0 substrates. The
egtimated phenomenological parameters qualitatively indicate that
the effect of the evaporated 5i0 is almost exclusively to destroy
the orientational order in the nematic phase, while at the rubbed
PVA, strong ordering and disordering effects do coexist as
manifested by the finiteness of the nematic contact angle. The
8i0 substrate possesses the disordering nature quite independent
of whether or not the nematic is uniformly aligned. However, the
strong interaction across the rubbed PVA and the nematic is
always accompanied by the rubbing process. It appears quite
reasonable that such a crude process as rubbing 1leaves both
ordering and disordering structure on the rubbed film. Although
the phenomenological approach based on macroscopic observation

tell nothing more into the microscopic origins of these eaffects,



the above results may be sufficient to illuminate how far the
rubbed and the obliguely evaporated substrates are from each

other.

In an accepted phenomenology such as hydrodynamics or elastic
continuuam theory, the basic egquations set a universal basis for
all relevant phenomena, while the specificity of a particular
system can be taken care of via a few adjustable parameters. The
present phenomenological approach is still too ¢rude to claim to
reach such level., However, the origin of success, if it can be so
Judged, may lie in the fact that the nematic-isotropic transition
is of weakly first order. In sufficient vicinity of the
transition temperature, the behavior of the nematic ig almost
governed by the orientational order parameter, while other
variables becomes less significant. So, it is essentially the
same gituation with the universality c¢lass associated with
continuous phase transitions. In this respect, the present
framework can not by pass the pitfall of the lL.andau theory. Then,
it will lome itg utility at points far from the transition point.
There, we should search for another universal structure to

construct an acceptable phenomenclogy.



Appendix I

PRECISTION TEMPERATURE-CONTROLLED

MICROSCOPE

As mentioned in Chapter 2, texture observations with a
polarizing microscope is one of the fundamental and often decisive
steps f£for the identification of various phases of liquid crystals
and the study of their internal structures. The properties of
ligquid c¢rystals are strongly temperature~dependent; in the case of
5CB, indeed, the birefringence An changes from 0.16 to 0.1 as the
temperature is raised from 5 K below the clearing point to just
beneath. And it Dbecomes even more so near the phase transition
points. Therefore, in the study of texture near the transition
point and the phenomena associated with the transition itself,
i.e., nucleation and growth of new phase, critical fluctuations,
etc., it becomes quite important to strictly control the sample
temperature.

Here described are the design and the performance of the
precision temperature-controlled microscope, which has been in
extensive use in my laboratory for observing wide variety of
ligquid crystal textures in the vicinity of the phase transition
point*. The temperature-controlled sample holder for
ellipsometric measurements (Chapters & and 7) has also been
designed on much the same working principles.

The present temperature-contrelled microscope 18 a modern
vergion of Lehmann's "cil-~hath microscope,” which literally means
a microscope immersed in an oil bath. Here, in order to achieve a
temperature fluctuations as small as 10“3 K with lesser
*"H. Yokoyama, S. Kobayashi, and H. Kamei, Rev. Sci. Instrum.
54, 611(1983).



temperature gradient over the liguid crystal cell, we have
installed almost all the parts of a polarizing microscope, i.e.,
objective, polarizer, analyzer, etc., together with the sample
cell in a multi-shielded temperature-controlled electric oven as
shown in Fig.A.l. Enclosing virtually all the structure of the
polarizing microscepe in an oven eliminates the difficulty
asgociated with the short working distance between the objective
leng and the sample, which becomes hazardous to realize a good
thermal insulation of the sample from the environment.

in Fig.A.1 shown 1is the cross~sectional view of the
microscope, and Fig.A.2 gives the perspective view of the optics
part. The oven consists of three copper enclosures and a copper
block in which a sample is placed. The outer most copper enclosgure
is thermally insulated from the gurroundings with foamed

polystyrene, and is aimed to reduce the posgsible temperature

gradient over the next copper
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] b1
ig sensed by a thermistor ang .;z 3« .
Sample /1 ‘wa/Conlrofimg
is fed to an electric circuit slot [ Z1 Q%N thermistor
14 E@ \‘/b =
for regulating the power sup- 1A ,~; Thermocouple
Polarizer | Hd]]] s E»
ply to the heating wires i Teflon rod
Cold filter L1 [ .
wound around the second inner N i .
7/4;:‘ H T Mirror
enclosure. This rather loca- Al /
Glass . Y
lized thermal contact between \ el s
windows e A insulator
the inner most and the next
enclosures is known to be 10 ¢m
| e |

very effective in reducing

the temperature gradients on .FEG.A.l. The cross-sectional view of
the temperture-controlled microscope.
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FIG.A.2. Optical
structure inside
the electric oven.

mireor

the inner most enclosure.” & copyper block of about 200(5X5X8)
cm3 ig placed inside the enclosure, while they are thermally
insulated from each other by means of two Teflon rods of 3-cm dia-
meter supporting the block. The large thermal inertia and high
thermal conductivity ensure good temperature stability and homoge-
neity on the block. Since thermistors, though they are gquite
sengitive, are not suitable for abhsolute temperature measurements,
the temperature of the copper block is simultaneously monitored
with 2 thermistor and a copper~constantan thermocouple.

An objective, a polarizer, and a reflecting mirror were
ingtalled in the enclosure together with the copper block
{Fig.A.2}. The vertical position of the objective can be changed
with a screw attached to the objective holder. An eyepiece was
mounted in a holder which is movable in x-, y-, and z-directions.
Iliuminating 1light is introduced through a cold filter and glass

windows in

———— e e e M R R MR M M e SR R e e e e e e

R.D. Cutkosky and B.F. Field, IEEE Trans. Instrum. Meas.
23, 295(19743.



front of the mirror, and observations are made through glass
windows between the objective and the eye-piece. The cold filter
cuts off the thermal radiation from the 1light source, thereby
preventing unwanted heating of the copper block. The whole
apparatus is operated in a room air-conditioned to 25+1 K.

The electric circuits used in the present apparatus are
similar to those employed by Grubic and Wurz*, which utilized an
AC-Wheatstone bridge for measuring the resistance of a thermistor.
The thermistors for controlling and monitoring purposes are of
bead-type (1.8 mm in diameter) having the resistance 3 kQ at 100
C and 150 kQ at 0 C. The AC-Wheatstone bridge was formed with
the thermistor and metal f£ilm resistors with a temperature-
coefficient as small as 5 ppm/K. This temperature coefficient is
sufficiently small to make it meaningful to detect a millidegree
difference in sample temperature, provided the resistors are
thermostated to +1 K. The driving AC voltage is limited to 0.3 V
in order for the self-heating effect in thermistors to be
negligible. The temperature setting is changed by varying the
resistance in the bridge circuit. And the unbalance signal from
the bridge is lead to a lock-in amplifier, whose output is further
fed to a proportional-integral (PI) controller driving the
electric heater.

Figure A.3 shows a
nematic schlieren tex-
ture observed with the
present microscope at
0.01 K below the temper-
ature (35.2 C) where the

nematic phase first ap-

peared on cooling from 5

of FIG.A.3. Nematic schlieren texture
observed with the present microscope.

M. Grubic and U. Wurz, J. Phys. E 11, 692(1978).

the isotropic phase



5CB. It c¢learly shows that the performance of the present
apparatus as a polarizing microscope is on the satisfactory level
for, at least, qualitative observations of liquid~crystal tex-
tures.

When the temperature setting was changed, two to three hours
were needed for the temperature to become aimost constant. And,
at a constant setting, it was observed that the readings both from
the controlling and from the monitoring thermistors were stable
within 1073 K for indefinitely long time. It should be noted,
however, +that the temperature of the sample could be different
from that of the block due to the opening which allows
illumination and observation of the sample. S0, the temperature
stability at the point of liquid crystal cell was directly
assesged by measuring the birefringence of the 1liquid crystal,
5CB, which was planar aligned by means of glassg substrates coated
with an obliquely deposited 8i0 film.

If a monochromatic light with wavelength A is incident on
the nematic cell of thickness d placed between crogsed polarizers
{see the inset of Fig.A.43, the output light intensity I is given
by Iosinz(nélnd/A) + 1., where I, and I, are the intensities of
the incident light and the leakage light. Since the birefringence
of BCE varies with temperature approximately following d4An/4T~~
ZXIO“Z K“i near the clearing point, the relative change of the
ocutput light intensity can be given by

AL/ = - 4><1o‘2(nd/;\)tanmlz)/[1+Ir/I°sin2(R/z)]M.
where R is the ratardation
R = 2nAnd/A.

S0 that, when Biﬂ(R/Z)"(xr/Io)llz, this birefringence thermometer

acquires a maximum sengitivity, i.e.,



~ -2 1/2
FAT/TH g, ~ 2X1079(nd/ A (1o/1 04 2AT.

Hence, for a 40-pgm-thick c¢ell illuminated by a He-Ne laser

{A=633 nm), it becomes
I AI/LI ~ 10%AT
max

when the extinction coefficient I ./Io is assumed to be 1073, Then,
it is c¢lear that under this condition, a temperature variation on
the order of 10"3 K can be eagily resolved by this method.

Traces {(a}) and (b) in Fig.A.4 show the time wvariations of the
block temperature, as measured by the thermistor, and the sample
temperature evaluated f£rom the birefringence of 5CB in 40-im-
thick c¢ell, respectively. They clearly show that the temperature
of the sample as well as that of the bklock can be stabilized to an
accuracy better than 10_3 K for over several hours. It is also
evident from the almost simultaneous onset of an increase near the
end of those traces that the thermal contact between the sample

and the copper is satisfactorily good.

it C d Photodiode
Im’C /
Tl —_
- / Liquid crystal
. L cell ™
of 2 mnc V P ] L i
[T SF i
i 5 min He-Me Laser

relative temperature
o
4
+
1#

0 ] 2 3 4 5 & 7
time (hours)

FIG.A.4. Time variations of temperatures. (a)Copper block
temperature measured by a thermistor. {b) Optically measured
sample temperature. (c)Details of the traces, {(a) and (b),
near the kinks at 6.8 h. (d)Experimental setup for optical
temperature measurement.
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Appendix 2

EQUITL.IBRIUM SHAPE OF

A MNEMATIC DROFP

In Section 6.1, we have tacitly assumed that the eguilibrium
gshape of a nematic drop can be determined only by the balance of
interfacial tensions satisfying Young's equation just like a drop
of an ordinary liquid. However, many of the surface and bulk
properties of nematic liquids are anisotropic; so that, it is
highly plausible that a drop of nematic, when surrounded by
foreign media, would assume a characteristic form which more or
less reflects the anisotropic nature of the nematic. Here, we
consider the factors affecting the egquilibrium shape of a nematic
drop and to clarify the condition under which Young's equation can

be applied as such to a nematic drop.

The eguilibrium shape is the form of a liquid domain which
minimizes the thermodynamic potential of the system under a given
external condition. In the case of an ordinary 1liquid, this
regquirement leads to VYoung's egqguation, and in the case of a
crystalline so0lid, it vields the well known Wulff construction*.
In both cases, the matter of finding the equilibrium shape isg
reduced to the problem of finding the shape with the minimum
surface free energy under a given volume of the drop.

In general, however, we must take into account the
superficial or wvolumetric elastic contributions as well, which are
connected with the presence of a boundary and are thus dependent
on the shape of the drop. The total thermodynamic potential of

the system is expressed as a sum of (1) the usual volumetric

D.P. Woodruff, The Solid-Liquid Interface, (Cambridge,
1973), pp.9-11.



thermodynamic potential £ which depends only on the volume,

vol-’

(2) the superficial free energy qup associated with the
interfacial tension, and {(3) the elastic energy Qelas induced by
the specific boundary condition imposed at the interface of the

drop @as regards the orientation and/or the translation of

molecules:
Qeotal = %vo1 * Qgup * Yelas: (A.1)
The second term can be specifically written as
qup =~[ 7 (p) dA, {(A.2)

where 7 (p) denotes the interfacial free energy at the point p on
the boundary, and the surface integration should be performed over
the entire interfaces in the system including the boundary of the
drop. Under the condition of the constant volume, Qvol is an
invariant independent of the shape of the drop, and hence can be
omitted in determining the egquilibrium shape. The third term,
however, 1is negligible only some special cases leading to Young's
equation and the Wulff construction.

Before, considering the equilibrium shape of a nematic drop,
we need to note the following property of the surface or boundary

tension of a nematic liquid crystal:

The surface tension of a nematic ligquid crystal is
isotropic, i.e., it does not depend on the direction along

which the surface tension is measured.

Proof: Consider the thermodynamic potential £ of the
region o©of the nematic as shown in Fig.A.5 held at fixed
temperature and chemical potential. Then, for the change

in Lx and L occurring under a fixed volume, we can write

Yy



aR = TxLyde + rYLdey.

Hence, in order for the right-hand side to be integrable,

we should have

Tg = Ty- (A.3) Z

This is esgentially

the surface analog ¢of the
well-known fact that in

the bulk of a nematic

phase, the pressure

tensor is isotropic, even

though the molecules are

anisotrepically oriented. directions parallel (y-axis) and
perpendicular to the director.
And, Eq.(A.3) also The nematic liquid occupies the

applies to the boundary half space below the x-y plane.

tension for a nematic in contact with a hard sclid wall,
This isotropy should not be confused with the anisotropy
of the surface tension of nematics with respect to the

rotation of the director at the interface,

A. Large drop

Let wus first imagine that the nematic drop (resting at the
isotropic-solid interface) 1is sufficiently large so that the
volumetric elastic energy can be neglected in compariscn with the
superficial term; for a drop of 1linear dimension R, the
superficial term is preoportional to RZ, whereas the elastic term
is to R. In this case, the director configuration within the drop
is solely determined in such a way as to minimize the anchoring
energy, and is shown to take a nonuniform profile as illustrated
in Fig.A.6, in which a planar alignment is assumed on the
substrate surface; this configuration has also been adopted in

Chapter 6 (Fig.6.3) without a detailed discussion on its validity.



Except at the disclination lines of topological origin, the
director is oriented along
the easy axis over the

farge dro T
nematic-isotropic and the g P disclingtion

7
nematic-solid interfaces,. “IL £é§§§§§§§;§
Therefors, the superficial

pe————3]

thermodynami¢c potential <¢an

r
be written as a sum of the

free energies associated with FIG.A.6., Director configuration inside a

large cap-shaped drop resting on a planar

. aligning substrate. When the boundary

with the disclination 1lines. condition at the nematic-isotropic interface
is conical, there in general appear two kinds

In particular, because of the r gigelination lines, one along the meridian

and the other along the circumference.

the interfacial tensions and

aforementioned property of
the surface tension of nematics, the interfacial tension assumes a
unique value, irrespective of the direction relative to the
director, once the phases in contact, e.g. nematic and isotropic,
are specified. Thus, asgs long as the effect of the disclination
lines can be ignored, the equilibrium shape ¢of the nematic drop
can be determined in completely the same manner as that for a drop
of ordinary liquid. Conseguently, we cobtain a circular cap-shaped
drop satisfying Young's equation,

The condition under which the disclination effect is
negligible can be roughly worked ocut by the following gqualitative
argument. Assuming a cap-shaped drop with a height h and a radius
r (*h) [see Fig.A.6], we can write the contribution of the

interfacial tension as

; - 2.2 _ 2
Q up(tenszon) = qup(O) + n?}u(r +h%} + Zn(rsn T s )%,

s si
(A.4)
where qup(O) is a constant independent of h and r. As confirmed
by a direct calculation, minimization of the above under a

constant drop volume ?:(n/ﬁ)h(3r2+h2) vields Young's equation,



+ T,30080 741 (x2-0%)/(x%+n?).  (A.5)

Tgi ® Tgn Tgn *

In general, there appear W

two kinds of topological dis-

isotropic

¢lination 1lines: one along \txzﬁ/
the meridian perpendicular to \\M“,//
the substrate-induced alig- nematic
nment as observed in Chapter
& {(Fig.A.7(a}], and the other b

(
along the three-phase contact ) .
line resulting from the con- isotropic

. . L nematic

fliecting boundary conditions
at the nematic-isotropic and solid

the nematic-subsgtrate inter-

- - W%Iétgfﬁtwawwww,,mw,wﬁwWﬂ ‘
faces {Fig.A.7(b)1. Denoting irector configuration around

the disclination lines shown in Fig.A.6.
the free energies associated

with the unit length of these disclination lines by 04 and 0o,
respectively, we can write down the relevant part of the

guperficial thermodynamic potential as

Q(disclination) = o s8(r2+h?)/h cos™ 11 (r2-n?)/(r?+n?))
+ Znogyr. (A.86)

For simplicity, we shall replace the first term by its upper
bound:

Q(disclination}) = 2nr(01/2 + 02). (A.T)
Clearly, this contribution acts ag a line tension*, which modifies
the equilibrium condition of the drop as expressed by Young's

equation [Eq.(A.5)] to

L

T hyico8Q + (61f2+62)/r. {(A.8)

P. Tarazona and G. Navascues, J. Chem. Phys. 75, 3114(1981),

and the references therein.
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In Fig.A.7, the director configurations around the dis-
clination lines are schematically illustrated. By following the
treatment of surface disclinations due to Vitek and Kleman*, we
can obtain a rough estimate of the free energies ¢,; and 0,. For

example, in the one constant approximation, we find
gy =~ (nK/Z)[ln(R/2d0)+1], {(A.9)

where X is the Frank elastic constant, de the extrapolation length
at the nematic-isotropic interface, and R the linear size of the
nematic drop. Then, we see that for samples of a realistic size
and anchoring condition, 04 is a gquantity of the same order of
magnitude as K., Similarly, we readily find that o0 ,~K.

7 ni and X are on the order of IO'SJ/m2 and 10_1£N,

respectively, we can concliude from Eg.(A.8) that, only when the

Since

radius of the nematic drop is as small as lum, the disclination
can exhibit a significant effect in determining the eguilibrium
shape. Otherwise, the drop is expected to assume a cap shape 1in
agreement with the microscopic observations presented in

Chapter 6,

B. Small drop

In small drops, the elastic deformaticons can no longer be
neglected, and the director orientation at the interface is
expected to be significantly deviated £from the easy direction.
Though it is difficult to generally treat this situation, we can
formally eliminate the elastic contribution if the drop is very
small. Namely, when the drop is extremely small, the elastic
torqgue overwhelms that due to the interface, thereby making the
director align almost uniformly within the drop (Fig.A.8). in
this c¢ase, too, the equilibrium shape can be determined only by
the consgideration of the minimum condition ¢f the superficial free
energy.

V. Vitek and M, Kleman, J. Phys. (Paris) 36, 59(1975).

A - 12



As clear in Fig.A.8, the
interfacial tension 1is not

constant throughout a boun~ S L
small drop

dary, but changes from one
point to ancther according to
how much the boundary direc- F \
tor is distorted from the F |

easy axis. Consequently, the
egquilibrium shape ig not a — - - R, )
. FIG.A.B. Egquilibrium shape of a small nematic
simple cap shape as deter- drop on a planar aligning substrate, and the

mined by Young's eguation, director configuration within the drop. Due to
the curvature elasticity, the director is forced
but is more structured ref- to be uniformly aligned.

lecting the anisctropy or

equivalently the inhomogeneity of the interfacial tension. Note
that this case is essentially identical with the equilibrium shape
problem of a crystalline solid, in which the lattice structure is
preserved and the facetting which minimizes the surface free
energy is searched. The optimum facetting is produced by the
Wulff construction, and its extension to liquid crystal drops has
been carried out by Chandrasekhar*.

The distinction between the "large"” and the “small" drops
depends on the anchoring strength at the interface. For example,
if the anchoring strength at the nematic-igotropic interface
vanishes, no such a distinction exists, and the egquilibrium shape
of a nematic drop is always a cap shape determined by VYoung's
equation. For an infinitely strong anchorage, however, there is
ne "small" drop in the above sense; this means that the director
configuration 1is always distorted, while not entirely negligible
in comparison with the interfacial tension. The onset of this

intermediate situation may be characterized by the point where the

A - 13



elastic and the interfacial contributions become comparable.
To £find out an estimate of the size of such a drop, let us compare

the interfacial free energy of a spherical drop with the radius R,

F 7,5 (47R%),

" Ll
int

with the possible elastic deformation energy in the drop,

~ 3 2y .
Felas (4nR“/3)K/(2R*) = (2n/3)RK.
Then, by equating Fint and Felas’ we find
R ~ K/Tni. (A.10)

Using rniﬂvlo'SJ/m2 and K~10"1IN, we see that R~1um, showing
that in nematic drop with the gsize much larger than 1um, the
contribution of the elastic distortion on the equilibrium shape
may be neglected.

Ae discussed above, the eguilibrium shape of a drop of liguid
crystals is influenced both by the interfacial tension and by the
volumetric and superficial elastic distortions. Because of the
weakness of the curvature elasticity of nematics, however, the
latter effect becomes significant for drops with the radius
smaller than lum or so, and hence the observable equilibrium
shape is determined to a good approximation by Young's eguation.

As the elasticity becomes stronger as in smectics, the
elastic part is expected to play an important role. But, unless
the medium is very hard and/or the drop is small enough, the well-
known Wulff construction cannot necessarily be applied; and the
equilibrium shape must be determined via the complicated
compromise among the interfacial tension, the elasticity, both
volumetric and superficial, and the interfacial anchorage. The
wide variety of batonnet forms, which we observe upon appearance
of smectic phase in the isotropic or nematic phase, are considered

to be just of this type.

A - 14
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