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PREFACE

The liquid crystal is often referred to as a fourth state of
matter in that it appears in between the solid and the liquid
states as a thermodynamically distinct phase. This somewhat self-
contradicting name "liquid crystal" was indeed coined after the
fact that due to this intermediate nature, the liquid crystals can
exhibit at the same time the anisotropic properties, which are
characteristic to solid state, and the fluidity to the liquid
state. This marvelous state of matter is relatively a new comer to
our recognition, having been known for only about a century.
During this short history, however, more than 10,000 liquid
crystalline substances have been found or synthesized, more than
10 different liquid crystalline phases identified, and a number of
their fundamental physical and chemical properties explained. Most
surprisingly, liquid crystals have become an indispensable
ingredient of modern industry during the last two decades, mainly
as a material for electro-optic displays, and, today, their use
is expanding at an even more rapid pace.

It has been known from the very early days of liquid crystals
that the surface or interface of liquid crystals plays a
significant role in determining their appearance when viewed with
polarized light. In liquid crystals, indeed, the state of a
surface can affect the molecular arrangement over, say, 1 mm! away
from their surfaces. This is undoubtedly one of the unique
features of a liquid crystalline phase; in solids, molecules are
too strongly correlated with each other to be appreciably
influenced by the surface state, while in the isotropic liquids,
molecules are not correlated at allover a macroscopic distance.
The intermediate strength of the molecular correlations in liquid
crystals is making their surface properties that remarkable.



The fact that the molecular arrangement, in particular the
alignment within a liquid crystal can be controlled to a large
extent by the boundary conditions has found wide applications for
both scientific and industrial purposes to obtain liquid crystal
preparations with a prescribed alignment property; a well-defined
alignment is a prerequisite for reliable measurements of physical
parameters and for operation of liquid crystal displays. So,
liquid crystal scientists have, intentionally or unintentionally,
always had to be exceptionally familiar and concerned with the
phenomena occurring at their surfaces. Despite these encouraging
circumstances, the understanding of liquid crystal surfaces has
been unduly impeded, when compared with the level of understanding
of their bulk counterparts. In recent years, however, witnessing
the certain maturation of the field of liquid crystals, on the one
hand, and the rise of interest in other fields into surfaces and
thin film processes, on the other, an increasing number of
theoretical and experimental studies have began to be directed to
serious exploration of the liquid crystal surfaces. Those range
from the characterization, both macroscopic and microscopic, of
the surface-induced alignment of liquid crystals to the
investigation of novel phase transitions and critical phenomena at
surfaces and in thin liquid crystalline films. And their
connections with the findings in other fields are also being
extensively exploited. Furthermore, the growing interest into the
use of ferroelectric liquid crystals and more generally into
aligned organic films is requiring to open up a new frontier in
the practical applications of surface-alignment phenomena.

In his famous text book, Ih~ ~hY~l~~ Qf ~lgYlg ~~Y~t~l~,
P.G. de Gennes notes "...yet many experiments which could have
been done thirty years ago are only now being performed," in



connection with the state of the whole field of liquid crystals.
This statement even now applies to most of the current studies on
liquid crystal surfaces. I am not, however, to imply that the
consequences of those studies should be out of date, rather I
understand, just as in the days when de Gennes wrote the book,
that fundamental concepts and facts are now emerging in this
intriguing field of research. In this article, I wish to give a
comprehensive account of this emergent field, mainly following the
works of the author performed in the last seven years in the
Electrotechnical Laboratory. My intention here is primarily to
figure out physical principles behind the alignment of liquid
crystals at their surfaces. Consequently, a substantial emphasis
of this thesis will be placed on the theoretical aspects of the
interfaces of nematics. In the course of expositions, however,
emphasis will also be laid on experimental techniques in use for
liquid crystal surfaces, because, in my opinion, the development
of such techniques has always been and is playing a decisive role
in making up the current status of the field, and vice versa.

As made clear from time to time through the history of
science, an ~~ initiQ understanding of any macroscopic phenomenon
is realized only after an appropriate phenomenological description
becomes available; and it may be even more so, as the system in
question becomes more and more complex. Unfortunately, however,
there has ever been no systematic effort to develop a
phenomenology of the nematic interface, neither in theory nor in
experiments. It is my ambition of writing this thesis to make a
contribution in this direction. This is the reason why I included
the term "phenomenology" in the title. As a matter of course, I
am not necessarily satisfied with the result, and much is
certainly left to be done. But I am convinced that at least a
direction of future researches could be presented.



The preferential orientation of organic molecules at an
interface is quite a universal phenomenon which manifests itself
in various ordered structures in nature such as biological
membranes, soap films, micelles and vesicles of amphiphilic
molecules, Langmuir-Blodgett films, epitaxially grown layers, etc.
Today, there is not so much distinction between basic and applied
works in these field. The outcome of basic researches are soon
reflected in applied area, and applied works are feeding the
thought of basic researchers. The understanding of the surface
alignment of nematic liquid crystals is of course important in its
own right, but it will be even more significant in other fields in
the long run. It is my great pleasure if this thesis is of some
value to those who are working in these fields.

My sincere thanks are due to Professors T. Moriizumi,
T. Hino, A. Fukuda, M. Iwamoto, and K. Takahashi of Tokyo
Institute of Technology for their constant encouragement and
considerations. I must also express my hearty gratitude to
H. Kamei, S. Kobayashi, U. Itoh (now with Kodak), and all other
members of Electronic Chemistry Section, Electrotechnical
Laboratory, for their helpful, stimulating, and lasting
discussions and positive critiques. Especially, I would like to
thank H. Kamei, as it would be entirely impossible for me to
complete this thesis without his patience. Finally, I want to
thank my wife Hiroko for her devoted cooperations.

H. Yokoyama
April, 1987
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Chapter 1

INTRODUCTION

1.1 Motivation

The surface or interface of matter is a geometrically
marginal region wherein its, otherwise uniform, physical and
chemical properties vary almost abruptly. Despite this
geometrical limitation, it is not at all literally marginal; but
known are a number of phenomena which are essentially connected
with the presence of an interface: wetting, adhesion, lubrication,
emulsification, adsorption, catalysis, crystalization and
vaporization, vacuum deposition, biological processes at
membranes, and further to name but a few, electrode processes and
electron transport across semiconductor contacts.

Since the days of Young in early 19th century who, for the
first time, recognized the significance of a surface for
establishing mechanical equilibrium in liquid systems, the study
of surface and interface has constituted a large branch of
materials science. Today, because of that wide range of relevant
phenomena, as listed above, and their technological and scientific
import, we are experiencing even greater impetus for understanding
the physics and chemistry underlying the interfacial processes.

The surface of nematic liquid crystals occupies an especially
impressing position in the map of all the surfaces and interfaces
found in nature. This is in almost the same sense that a liquid
crystal is of interest as a phase in between the crystalline solid
and the liquid states. More specifically, the nematic surface or
interface is, on the one hand, flexible enough to assure easy
access to thermodynamic equilibrium, yet on the other, hard enough
to impose preferential orientation on constituent molecules,
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thereby producing structural anisotropy which propagates far into
the bulk medium.

This long known phenomenon, called the "surface-induced
alignment" in liquid crystal parlance, is now of tremendous
technological significance in the production of liquid crystal
displays, playing in a sense as essential a role as that of the
electro-optic effect itself in liquid crystals. Furthermore, the
current need for high speed, large area, and high information
density displays is opening up the introduction of novel operation
mechanisms as well as the use of new materials, for instance,
ferroelectric liquid crystals, which is then making the
requirement even more intense and wide ranged for the alignment of
liquid crystals on substrate surfaces. Along with this
technological facet, it appears worth pointing out that the
surfaces or thin films of liquid crystals offer an ideal sample to
test the theoretical predictions made in connection with the phase
transitions in lower dimensional and bounded systems.

From the surface scientific point of view, the origin of the
alignment of nematics at their surfaces is no different from that
of characteristic orientational states adopted generally by
asymmetric molecules on liquid or solid surfaces; for example,
that occurring in Langmuir films on water. But what probably
makes it truly distinctive is the fact that this "microscopic"
anisotropy in molecular orientation is brought into a
"macroscopic" anisotropy by way of long-range orientational order
existing in nematics. So that the understanding of nematic
surfaces requires, among others, the understanding of their
orientational properties.

The nematic surfaces are a kind of liquid surface; hence, it
is not at all surprising even though they lack microscopic
characterizations, as is today the case for ordinary liquids to
which modern techniques such as electron microscopy, LEED, etc.
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requiring ultra-high vacuum are largely inapplicable. However,
most regrettable about the nematic surfaces is the fact that they
are far from being adequately characterized even on the
macroscopic (phenomenological) level, when compared with their
ordinary liquid counterparts. Especially, in terms of their
orientational properties, even an appropriate theoretical
framework is not necessarily clear, on which such macroscopic
characterizations may be correctly done.

Till the advent of liquid crystal displays in late
the
of

orientational phenomena at nematic surfaces were the
only some sporadic studies. But in the last two

1960's,
subject

decades,
quite a few studies have been carried out, figuring out some
fundamental concepts and features of the surface-induced
alignment. It must at the same time be admitted, however, that a
large part of them were either too descriptive or too speculatvie
to give a coherent picture of the nematic surfaces on the
macroscopic level. In the present thesis, I wish to set forth
one possible scenario of how to draw a phenomenological picture of
the nematic surfaces, starting from the thermodynamic basis of the
alignment at surfaces to some specific observations which appear
to be particularly illuminating the orientational properties of
the nematic surfaces.

As well known, the direction of alignment (called the
"director") and the orientational order are the key quantities
specifying the orientational state of nematics. Consequently, our
primary goal (as far as nematic sample is concerned) is to
elucidate "How" and "Why" the director and the order are
influenced by surfaces. To ultimately answer the question of
"Why," on the one hand, one must take account of the detailed
molecular interactions and predict their macroscopic consequences
to such an extent to be compared with experiments. This is nothing
but the aim of the condensed matter physics and chemistry as a
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whole, and as far as structure formation in condensed phases is
concerned, we know at present few successful example. But, on
the other, an answer to the former question may be greatly varying
in its accuracy, ranging from a mere description of single
observation to a presentation of a highly intercorrelated set of
observations which are unified to be consistent with each other.
What I try in this article is to answer the question of "How" in
the last sense as deeply as possible. I believe only such an
endeavor will be a real asset for answering some day the question
of "WhY."

1.2 Summary and Layout

Some chapters of this thesis are solely theoretical aiming at
creating a phenomenological framework for nematic interfaces, and
some are largely experimental devoted to the description of
specific observations and the experimental techniques needed.
Both are treated with equal emphasis as an indispensable and
complimentary ingredient for the present goal. In experimental
section, in particular, I have tried to select only such topics
that are thought to "primarily" reflect the orientational property
of the nematic surface: namely, the order-disorder phenomena and
the stability of the orientation. Moreover, in order not to
obscure the point, the experimental results presented are mostly
those for a single nematic substance placed on two commonly used
aligning substrates, which are shown a posteriori to be embodying
oppositely extreme cases of surface-induced alignment.

In the rest of Chapter 1, a historical overview is given on
the surface-induced alignment phenomenon, followed by the
description of the current status of their applications.

Chapter 2 is a preparatory part, in which fundamental
properties of nematic liquid crystals are compiled. In view of
the fact that the surface-induced alignment is a phenomenon which
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can be manifested and probed via the spatial configuration of the
director in the bulk phase, the Frank theory of curvature
elasticity is expounded in detail to facilitate self-contained
expositions in later chapters. The nematic liquid crystal is one
of few examples whose phase transition can be rather adequately
treated by a phenomenological theory. In view of the importance
of phenomenological description of nematics in later chapters, we
shall briefly review the Landau-de Gennes phenomenological theory
of the nematic-isotropic transition.

In Chapter 3, the fundamental concepts such as the pre-tilt
(the alignment direction), the anchoring strength (a measure of
the stability of alignment), etc. are introduced, which are needed
for quantitative discussion of the alignment at nematic surfaces.
Furthermore, in order to show up the current status of this field,
the models and conjectures of the mechanism of alignment so far
proposed, though none of them has concrete experimental support,
are summarized.

Chapters 4 through 8 are the main part of this thesis;
Chapters 4 and 5 are theoretical, in which the nematic interfaces
are in turn treated thermodynamically and statistical
mechanically with a view to giving a basis for the
phenom~nological unification of the interfacial properties of
nematics. In Chapter 4, the Gibbs surface thermodynamics is
extended to encompass nematic interfaces by taking into account
the orientational degrees of freedom of a nematic based on the
Oseen-Frank theory of curvature elasticity. In so doing, the
Gibbs equation is generalized to a form which is obviously related
to the pre-tilt angle and the anchoring strength. FrOm this
generalized Gibbs equation follow several thermodynamic relations
which are to be used in later statistical mechanical treatments
and are to provide important insights into the thermodynamic
significance of the temperature-, pressure- or composition-
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dependence of the pre-tilt angle and the anchoring strength.
Especially, a quasi-thermodynamic condition is derived for the
critical exponent when the pre-tilt or the anchoring strength
exhibits some critical behavior in response to changes in those
environmental conditions.

Chapter 5 is in essence divided into two parts. The former
half is devoted to the derivation of some rigorous statistical
mechanical formulas for the interface boundary tension and the
anchoring strength at a hard wall-nematic interface. And in the
latter half, an approximate theory is developed based on the
(Landau-de Gennes type) van der Waals picture of the nematic
interface, resulting in some explicit expressions for the
interfacial tension, the contact angle, the anchoring strength,
etc. involving a few phenomenological parameters. As often the
case with rigorous statistical theories, the formulas obtained in
the former part are not convenient for quantitative calculations.
However, they serve as a conceptual basis for approximate
theories. At present, especially, we are allowed by virtue of a
variational property of the anchoring strength to observe a good
parallelism to exist throughout the thermodynamics, the rigorous
and the approximate statistical theories.

In Chapters 6 and 7, which are respectively concerned with the
"microscopic" and the "macroscopic" aspects of the orientations at
nematic interfaces, some typical experimental observations of the
orientationa1 phenomena are presented and discussed on the basis
of theoretical ground founded in former chapters. As mentioned
already, those experiments were mostly done with respect to an
interface between a single material, 4-n-pentyl-4'-cyanobipheny1
(SCB), a typical room-temperature nematic liquid crystal, and a
substrate which was treated either by the rubbing or by the
oblique evaporation technique. These surface treatments are known
as the commonest techniques which are currently enjoying wide
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industrial and laboratory applications to achieve uniform planar
alignment for use in liquid crystal devices. Through the
exposition of the experimental results and their theoretical
analyses in Chapters 6 and 7, it will be made clear that those
alignment techniques are orienting nematic molecules based on very
different mechanisms, being in sharp contrast to the fact that
both techniques give rise to an apparently indistinguishable
alignment of good quality for very wide range of
substances.

nematic

Chapter 6 deals with the orientationa1 order-disorder
phenomena associated with the nematic interface. Firstly, the
contact angle phenomena occurring at the line of contact of the
three phases, substrate, nematic, and isotropic, are considered.
As well known in surface science, the contact angle gives a direct
measure of the relative stability of the interfaces that meet at
the line, in terms of the interfacial tensions. At present, in
particular, it offers an estimate of the relative affinity of the
ordered and the disordered states to the substrate, which governs
the order-disorder phenomena at their surfaces. Secondly, the
results of the wall-induced pretransitiona1 birefringence
experiments are presented, which give a measure of the strength of
the molecular orientation induced by the substrates by measuring
the local optical anisotropy in the nematic medium remaining near
the substrate at temperatures above the nematic-isotropic

how the nematic-transition point Tc. Finally examined is
isotropic transition should be modified as the thickness of the
nematic layer is decreased in between treated substrates; if the
substrate favors (disfavors) the nematic order, the transition
temperature will be enhanced (reduced) as the nematic thins.

All the results of those experiments done on the interface
between SCB and a substrate treated either by the rubbing or the
oblique evaporation technique point in one common direction as to
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the state of orientational ordering at these interfaces: The
rubbed substrate tends to enhance the orientational order of the
nematic in the vicinity of substrate, while the obliquely
evaporated substrate does tend to destroy the ordering. It is
furthermore indicated that the microscopic ordering induced by the
rubbed substrate goes hand in hand with the macroscopic alignment
of the nematic director on the substrate, while the disordering
due to the obliquely evaporated substrate occurs quite independent
of whether or not the substrate aligns the nematic over
macroscopic distance.

Chapter 7 is concerned with the following macroscopic
question: how stable is the alignment of a nematic at an
interface? At first, the conventional techniques for measuring
the anchoring strength are reviewed with an emphasis on the
reliability and precision of these techniques. Next, the "high
electric-field technique (HEFT)" developed by the present author
is described in detail and the factors affecting its results
discussed. The HEFT is not only an easy-to-use but a rather
reliable technique, in comparison with the conventional ones, and
is also useful to explore the complete functional dependence of
the nematic-substrate interfacial tension on the director
orientation.

The results of applications of the HEFT are presented,
including the temperature- and the director angle-dependences of
the anchoring strength, which were first obtained with this
technique. The temperature-dependences, especially the quasi-
critical weakening of the anchoring strength at the 5CB-obliquely
evaporated SiO substrate interface, are discussed based on the
thermodynamics and the Landau-de Gennes type theory of the nematic
interface developed, respectively, in Chapters 4 and 5.

Chapter 8 is devoted to summary and conclusion with some
comments on the future perspective of the field and its
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implications of the orientational phenomena at nematic surfaces
into the production of oriented, or more generally ordered thin
films of organic molecules.

The alignment mechanisms of nematics on the rubbed and the
obliquely evaporated substrates have always received much
attention,
today, it

and some "conjectures" have indeed been proposed. And
is unhappily often believed without reflection that

(semi-)microscopic grooves, in a broad sense, brought about by the
rubbing or the oblique evaporation process is responsible for both
cases. As will be shown throughout this article, the alignment of
nematics on these substrates are not this simple, but has a number
of clear features which make them quite distinct. On the rubbed
(polyvinylalcohol) substrate, the nematic assumes a higher
orientational order, a small contact angle, and a large anchoring
strength with negligible temperature-dependence, but on the
obliquely evaporated (SiO) substrate, it takes oppositely a lower
orientational order, a large contact angle, and a relatively small
anchoring strength with marked temperature-dependence. These are
properties that can not be easily reconciled on a simple
mechanistic view based on the groove model. If it is understood
through this thesis how crucial and useful is to collect such
information that clearly signifies the difference of one alignment
from the other, I would say that at least a part of the present
goal should be reached.

1 - 9



1.3 Surface-induced alignment of nematic liquid crystals:
Historical overview

It is now well accepted that any sterically and/or
functionally asymmetric molecules tend to more or less align in a
preferred direction when placed at an interface between two
distinct media. It was independently theorized long ago by
Langmuir [1] and Harkins [2] based on close examination of large
number of surface tension data that, at the free surface of pure
organic (ordinary) liquids, there is a tendency for the
hydrocarbon ends of molecules to be oriented outward when one end
of the molecule is hydrocarbon and the other end has an extra
affinity to the liquid. The concept of the "preferential surface
orientation" of molecules successfully accounted for, semi-
quantitatively at least, the various experimental observations.
Langmuir [1] also directed his attention to molecular orientations
in insoluble monomolecular films of saturated fatty acids and
alcohols spread on water. And, based on the fact that the area of
the water surface occupied by a single molecule (estimated from
the number of molecules employed and the total area occupied) did
not change as the length of hydrocarbon chains was varied from 14
to 34, he could correctly conclude that these rather elongated
molecules assume an upright orientation with the hydrocarbon
pointing outward from the water surface. Furthermore, Langmuir
[1] attempted to interpret Traube's rule [3] concerning the
surface tension of solutions as a manifestation of a planar
orientation of hydrocarbon chains.

All of these pioneering works on the orientation of molecules
at an interface were based on indirect evidence drawn from
the measurements of various macroscopic quantities of a liquid
interface. Though some more evidence has been accumulated by way
of surface potential and optical experiments, etc. since then, the
orientation of organic molecules at an interface still stands out

1 - 10



as a difficult subject to explore,
from a theoretical [4] view points.

both from an experimental and

The orientation of nematic liquid crystals at their
interfaces has an even longer history of investigations. However,
it has been approached from a direction,
adopted for an ordinary liquid interface.

very different from that

Reinitzer first discovered the liquid crystalline state, the
Since 1888 in which

observation with a polarizing microscope has been the most

Indeed,
fundamental and powerful procedure for studying liquid crystals.

it was Lehmann, a German physicist specialized in
microscopic crystal analysis, who coined the names such as
"flowing crystals," "crystalline liquid," and "liquid crystal" on
the basis of his microscopic observations of the double refraction
or birefringence in his liquid-like preparations. In Fig.1.1
shown is a typical patterns, now called the schlieren texture,
exhibited by a thin film of a nematic liquid crystal held between
glass plates when viewed under a polarizing microscope with
crossed polars. Though the nematic sample flows like an oil, we
can see bright regions indicating the presence of birefringence.

FIG.l.l. Schlieren texture
of a thin nematic film
confined between glass
plates. Viewed under a
polarizaing microscope
with crossed polarizers.

In this figure, we can also see some alternating dark
brushes, which is an indication that the optic axis is changing
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from one point to the other in the specimen, and at the dark
bands, it coincides with the axis of polarizers. We now know that
such spatial variations of the optic axis is brought about by the
action of the glass plates with which the nematic is in contact.
And, this orientation of the optic axis is a manifestation of the
microscopic orientation of the nematic molecules at the glass-
nematic interface.

In contrast to the case of the molecular orientation at an
ordinary-liquid interface, one can "directly" observe the surface-
induced alignment of molecules in liquid crystals. Though it is
not the microscopic orientation at the interface itself, liquid
crystal scientists have been unfortunately satisfied with this
advantage for more than half a century, and have paid little
attention to the physical and chemical aspects of nematic
interfaces even in the manner as Langmuir and Harkins did for
ordinary-liquid interfaces. Nevertheless, it was certainly in
this period leading to the advent of liquid crystal displays in
late 60's that some notable observations of the phenomena were
described and important progress in the surface-induced alignment
methods was made [5]. Below, we shall briefly review such topics.

1.3.1 Pseudo-isotropy: the first uniform surface-induced
alignment

Though the textures of liquid crystal preparations are
seriously affected by their boundaries, it took more than ten
years to lead the eyes of workers to surface effects. In 1906, 18
years after the discovery of the liquid crystal, Wallerant [6] and
Lehmann [7] described "pseudo-isotropy" or "forced homeotropy";
the liquid crystal specimen appeared completely dark between
crossed polars, regardless of the orientation of the polars, as if
it was an isotropic substance.

Concerning this observation, Lehmann confidently stated [5]:
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Pseudo-isotropy can be caused by the adsorptive(!) action of
the glass; the optical axis is everywhere perpendicular to
the surface ....Thin layers adsorbed on the glass govern the
orientation of the remaining molecules. They can be altered
to such a degree like soft crystals by means of rubbing, that
the entire mass obtains a uniform structure. The
transformation temperature of the layers adsorbed by the
glass is raised, so that they are maintained even when heated
considerably to above the clarification pOint.

Furthermore, Lehmann [8] correctly pointed out the role of the
vertical position of lecithin molecules in promoting the pseudo-
isotropic or homeotropic alignment. The adsorption of long chain
surface active agents such as lecithin is still in wide use for
obtaining homeotropically aligned samples [9].

1.3.2 Rubbing method

In 1911, Mauguin [10] produced a uniformly aligned sample of
a nematic liquid crystal, p-azoxyanisole, with its optic axis
parallel to the glass plate whose surface had been rubbed in one
direction with a piece of paper. In this case, the optic axis was
parallel to the substrate, not perpendicular as in homeotropic
alignment, and this type of alignment is called "planar" or
sometimes "homogeneous." It is interesting to note that by using
this technique, he obtained a twisted-nematic structure, which is
just the configuration almost invariably used in current electro-
optic displays, and closely investigated its optical properties.
The rubbing method was also recognized to be effective by Zocher
and Coper [111.

The rubbing method of the surface-induced alignment was also
extensively used by Chatelain [12], probably independent of
Mauguin, for the sake of the studies on optical properties of
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nematics. Furthermore, he speculated that the planar orientation
on a rubbed surface resulted from deposition of an adsorbed layer
of fatty impurities which aligned the nematic molecules via
dipole interactions. However, he did not rule out the possibility
of physical alteration of the glass surface by the rubbing action.

The rubbing method is still one of the most important
techniques for producing uniformly aligned layers of liquid
crystals for use in display devices. Though much elaboration has
been made on the rubbing procedure and materials since the days of
Chatelain, the mechanism and the state of the alignment is far
from clear cut. As a result, quite a few conjectures have been
proposed; as opposed to the adsorbed impurity mechanism due to
Chatelain, the rearrangement of the substrate material [13] and
the grooves brought about during the rubbing process [14] have
been suggested to be responsible for the alignment. One of the
questions to be addressed and answered in this article is in fact
concerned with the origin of the alignment on rubbed surfaces.

1.3.3 Epitaxy on crystalline surfaces

An important observation of the surface-induced alignment is
the epitaxial orientation of nematic molecules on crystalline
surfaces. Though it has so far found no practical application, it
serves as clear experimental evidence showing that the alignment
of a nematic liquid crystal is indeed governed by the microscopic
interaction across the interface.

The orientation of liquid crystals on cleavage surfaces
crystals were investigated by Grandjean [15] in as early as

of
1916

for over 80 instances. He observed that, on a cleavage surface of
a single crystal, a nematic liquid crystal formed several distinct
regions in each of which the optic axis of the nematic was
uniformly oriented in a direction clearly related to the symmetry
of the basal crystal.
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1.4 Application of aligned liquid crystals

Uniformly aligned layers of liquid crystals, often referred
to as "single crystalline liquid crystal layers", playa critical
role in the liquid crystal-based electro-optic displays. Though
the alignment techniques of nematics had been pursued, as
described in the previous section, primarily for the purpose of
precise experimental studies of various anisotropic properties in
early days, the proposal of "dynamic scattering type" liquid
crystal displays due to Heilmeier [16] in 1968 and especially the
advent of "twisted nematic" (TN) displays by Schadt and Helfrich
[17] in 1971 sparked a great deal of practical interest into the
surface-induced alignment of nematics.

In this section, we shall describe the basic principle of
liquid crystal displays with a view to illustrating the practical
significance of the interfacial orientation of nematic liquid
crystals. We will focus our attention on TN displays, as more
than 99% of the commercial liquid crystal displays are of TN type,
today [18,19]. However, since the orientational property of an
interface has serious influence on the multiplex operation of
liquid crystal displays, we will shortly discuss the point
together with future perspective of the application of surface-
induced alignment.

1.4.1 Basic structure of liquid crystal displays

In Fig.1.2 shown is the schematic illustration of the basic
structure of a field-effect liquid crystal displays. The nematic
liquid crystal is confined in between a couple of substrates to a
thickness of about 10 #m. The substrates are usually glass
plates (with the thickness of about 1 mm) coated with a
transparent electrode made of Indium tin oxide (ITO), and the
electrode is further covered with a layer of polymer or an

1 - 15



inorganic film which are then
treated so as to align the
liquid crystal in the desired

spacer sealant

manner. The separation bet- transparent ~¢~,,\~§~
electrode -F-~-~~====-==~===~~ alignment

\ - layer\
glass plate liquid crystal

ween the substrate is main-
tained by means of a spacer
such as small glass spheres
or fibers, and the liquid
crystal cell is hermetically
sealed with frit glass or
more commonly with polymeric
resin.

FIG.I.2. Cross-sectional view of a
typical field-effect liquid crystal
display cell.

1.4.2 Operation principle of TN displays

Field-effect liquid crystal displays are based on the
reorientation of liquid crystal molecules upon the application of
electric filed. When we see this process between crossed
polarizers, we can observe a change of brightness, i.e. from clear
to dark or from dark to clear, depending on how the reorientation
occurs. In any event, such a change is thought to be most
efficiently brought about when the initial alignment is uniform
rather than irregular as in Fig.1.1.

In TN display cells, the nematic molecules are forced to
align parallel to the substrate, but the alignment directions at
the upper and lower substrates are set to be perpendicular to each
other (Fig.1.3). In the absence of electric field, this
configuration results in a planar twisted profile of the nematic
molecules (Twisted Nematic structure), and when a linearly
polarized light travels along the axis of the twist, the plane of
polarization rotates following the optic axis of the nematic.
Then, after passing through the cell, the polarization is
perpendicular to the initial direction [Fig.1.3(a)]. So that, in
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the absence of electric field, TN cell appears clear between
crossed polarizers.

liquid
crystal --->

(a) off (b) on

FIG.l.3. Principle of the twisted-nematic liquid crystal display.
The arrows between the substrates denote the optic axis of the
nematic liquid crystal. In the off state (a), the cell is trans-
parent between crossed polarizers. In the on state (b), the cell
appears dark.

The nematic liquid crystal to be used in TN displays is such
that, in an electric field, the molecule, or equivalently the
optic axis tends to orient along the field direction. Thus, on
application of sufficiently high voltage to the TN cell, the optic
axis reorients in the middle of the cell almost perpendicular to
the substrate. In this case, the pseudo-isotropy condition
obtains except in the vicinity of the substrate surfaces where the
nematic molecules are strongly aligned. So, under this condition,
the TN cell appears dark between crossed polarizers. We can
therefore switch between the clear and the dark states by an
application of voltage. Obviously, the TN cell can be used both
in transmission and in reflection modes.
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1.4.3 Requirements on the surface-induced alignment and a future
trend

As appreciable from the above, the good initial alignment of
nematic molecules is a prerequisite for the operation of the
display. This situation is much the same in other type of
displays. In contrast to a surface-induced alignment in
scientific laboratory, the alignment in a display device should
resist repeated operations over the years. In particular, it
should be stable to decomposition products of the liquid crystal
as well as to other impurities coming from the sealant, etc.
Because the surface is extremely sensitive to small amount of
impurities, these requirement has been a serious challenge to
workers who have been in charge of developing the alignment
techniques [20]. As will be described in Chapter 3, quite a few
methods are now known, and some of them can indeed meet the above
requirements to a satisfactory level as far as the conventional TN
displays are concerned.

Recently, the application of liquid crystals has been
expanded to encompass TV displays and various character terminals
[21]. In these applications, the information content should be
dramatically increased compared with the seven-segment displays in
wrist watches. Consequently, a multiplexing operation
inevitable, which is in turn presenting problems
deterioration of visibility and the reduction of the
speed. Although a substantial progress has been made

becomes
of the

operation
by the

introduction of "active matrix" [22], a drastic improvement of
the multiplexibility has been theoretically foreseen by way of a
detailed control of the interfacial orientations [23-28].

In order to secure the visibility loss in TN structure,
Scheffer and Nehring [29] proposed a "super-twisted nematic"
display in which the optic axis is twisted more than 90 degrees.
In order to achieve the required initial configuration of nematic
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molecules, the surface of the substrate must be so treated that
the molecules be aligned in a direction inclined by about 30
degrees from the substrate surface. Although the working principle
of the display is no different from that of conventional TN
displays, the lack of good alignment technique is impeding its
commercial applications. The development of an appropriate method
for such an alignment condition is now the subject of intense
researches.

To overcome the limitation on the operation speed in TN
cells, quite a few studies have been concentrated on the use of
ferroelectric liquid crystals, which have been first synthesized
in 1975 [30]. Because of the permanent dipole, the coupling with
an electric field is several orders stronger than in the usual
nematic liquid crystal. Moreover, by making use of a well aligned
thin layer of ferroelectric liquid crystal, one can achieve a
bistable operation with a response time on the order of micro
seconds [31]. In this case, too, the hazard that is preventing it
from commercial realization is the lack of technique to facilitate
the alignment as required [32].

In view of these circumstances, it appears to be the high
time to start intensive systematic and basic studies on the
interfacial orientational· phenomena of liquid crystals to bring
over the surface-induced alignment techniques from the hands of
artists to engineers.
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Chapter 2

PHYSICAL PROPERTIES AND STRUCTURE

OF NEMATIC LIQUID CRYSTALS

This chapter is devoted to the description of the fundamental
properties of the nematic liquid crystal [1-6] so as to found a
minimum necessary basis for investigating the nematic interface in
later chapters. We focus our attention here on the symmetry and
long range order in nematics as well as on the elastic properties.
However, the treatment is extensive only for the Frank theory of
curvature elasticity [7], since it plays an especially important
role in formulating the principal concepts of the orientation at
nematic interface. The symmetry and orientational order will be
touched upon very briefly, mostly in relation to the phase
transition between the nematic and the isotropic states, employing
the treatments due to de Gennes [8].

In connection with the curvature elasticity, we shall be, at
present, concerned only with uniformly aligned samples in the
absence and presence of external field. As we are exclusively
interested in the quantitative aspect of the interfacial
orientation of nematics, we shall largely neglect such important
topics as the "textures" and "disclinations" in thin nematic
samples [9,10], although they are closely connected with the
curvature elasticity as well as the surface properties.
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2.1 Fluid with uniaxial anisotropy: Nematic liquid crystals

Liquid crystals are states of matter with partial order as
regards the orientation of their constituent molecules, while
translational order is entirely or partially lost. As mentioned
in the previous chapter, the liquid crystalline state was first
found about a century ago by Reinitzer and Lehmann in an organic
substance.

Liquid crystalline states are the equilibrium thermodynamic
phases between the crystalline solid and the ordinary liquid.
There are two classes of liquid crystals, thermotropic and
lyotropic. In the thermotropic liquid crystals, with which we are
exclusively concerned here, the liquid crystalline phase emerges
as the solid of a certain
organic compound is melted.
In the lyotropic liquid crys-

(a)
tals, on the other hand, the
liquid crystalline phase is
obtained in colloidal solu-
tion, and in this class,

controllable parameter, (b)

concentration is the primary

rather than temperature as in
the thermotropic class.

Since Friedel [ 1 1 ] ,

three basic types of liquid
crystalline phases are dis-
tinguished according to their
structural properties:

(c)

"nematic," "cholesteric," and
"smectic." In Fig.2.1, the
arrangement of molecules in
these phases are schematical-

FIG.2.l. Arrangement of molecules in liquid
crystal phases. (a) Nematic phase. (b) Chole-
steric phase. (c) Smectic phase (smectic A).
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ly illustrated.
Liquid crystals are found among organic compounds. The

organic molecules which exhibit liquid crystalline phase have wide
variety of chemical structures. However, certain common
structural features can be found: (1) Highly non-spherical
molecular shapes, i .e. , rodlike, disclike, etc. ; (2) Rigid
backbone; (3) Strong dipoles or highly polarizable groups. In
Table 2.1, typical thermotropic liquid crystalline compounds are
listed together with their phase transformation sequence. The
experiments to be described in this thesis have been exclusively
performed on the chemically stable, room temperature nematic
liquid crystal, p-n-pentyl-p'-cyanobiphenyl, which is usually
referred to as 5CB.

TABLE 2.1. Typical liquid crystalline compounds
and their phase transitions.

1. P - azoxyanisole (PAA) 5. trans - 4- heptyl (4- cyanophenyl) cyclohexane (PCH-7. )

C,HI3-0-0-{)- CN

30°C 57°C
solid ~ nematic ~ isotropic

6. Cholesteryl benzoate

o ~H,c ~::

0-11
C-O

H3CO-O-N=~-O-OCH3

o
117.4°C 134.4°C

solid ~ nematic ~ isotropic

2. p-methoxybenzylidene- p- n- butylaniline (MBBA)

H3C0-O-CH=N -o-C4Hg

22°C 47°C
solid ~ nematic ~ isotropic

3. p-n-pentyl-p'-cyanobiphenyl (5CB)

CsHll-O-O-CN

147°C 186°C
solid ~ cholesteric ~ isotropic

24°C 35°C
solid ~ nematic ~ isotropic

4. p-n-octyloxy-p'-cyanobiphenyl (80CB)

CsHI,O-Q-O-CN

55°C 67°C 80°C
solid ~ smectic A~ nematic ~ isotropic
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2.1.1 The nematic phase

A. The director
The term "nematic" is derived from the Greek word,

l/ n u a t os (nematos), meaning thread-like. This terminology is
based on the naked-eye observation of nematic liquid crystals that
there can be seen a large number of thin threads (see Fig.1.1),
resulting from the arrangement of molecules in this state
[Fig. 2.l(a)].

The nematic phase is characterized by long-range
orientational order, i.e., the long axes of molecules (symbolized
by ellipses in Fig.2.1(a» tend to align along a preferred
direction. There is however no long-range order in the positions
of the centers of mass of the molecules, though a certain degree
of short-range order may remain as in ordinary liquids. The
molecules can rotate quite frequently about their long axes, and
there is no preferential orientation as regards the ends of
molecules, i.e., opposite orientations are equally probable. The
nematic phase has thus a uniaxial symmetry about this preferred
direction, and its macroscopic physical properties, optical,
electrical, magnetic, mechanical, hydrodYnamic, etc., all exhibit
corresponding anisotropy. The important concept in describing the
nematic state is therefore the axis of symmetry. And, it is
usually specified by a unit vector (along this axis) called the
"director" n. This picture of the nematic phase is supported by
the results of X-ray and NMR studies.

Although the ground state configuration of the director
corresponds to a spatially uniform one, the director may vary its
direction from one point to the other through the nematic as a
result of thermal fluctuations and/or of external agents such as
electric and magnetic fields, or surfaces. The action of surfaces
on the alignment of director is nothing but the surface-induced
alignment. As will be described later, the spatial variation of
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the director can be described with remarkable precision by means
of the Frank theory of curvature elasticity. And, it is now well
known that the opaque appearance of a nematic liquid is the
consequence of the intense light scattering due to vigorous
thermal fluctuations of the director [1].

B. The orientational order parameter
Another important concept in characterizing the nematic state

is the orientational order parameter, which describes the degree
to which each molecule is strictly oriented along the director.
For simplicity, let us imagine that the molecules composing the
nematic phase are rigid rod, whose orientation can be completely
specified by a unit vector 1; it should be strictly distinguished
from the director n. Since the nematic phase has, as mentioned
above, a center of symmetry, the average of 1 vanishes, and hence
it is impossible to define an order parameter of vectorial
character.

de Gennes [1] introduced the "tensor order parameter" which
is defined as

1
Q.. = - <31.1. - 0 .. > ,
1J 2 1 J 1J

(2.1)

where <> denotes the thermal average, and 0.. the Kronecker1J
symbol. Qij is a symmetric traceless tensor. It is readily
appreciated that Qij has a correct property as an orientational
order parameter for the nematic phase. For example, if the
molecules are perfectly aligned along the director in the x-axis,
we find

(2.2)

And, if they are randomly oriented,

(2.3)
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When the uniaxial symmetry prevailes as in the nematic phase,
the tensor order parameter can be rewritten in terms of the
director as follows:

where
1

Q = - (3cos2 e - 1),
2

with e being the angle
between the molecular
axis and the director.
Q is call the "scalar
order parameter" or
"order parameter" for
short, which assumes 1
in the perfectly orien-
ted nematic and 0 in the
isotropic orientation.
In Fig.2.2, the tempera-
ture dependence of the
order parameter has been
reproduced from Ref.12,
for homologous series of
n-alkyl-cyanobiphenyls.

(2.4)

(2.5)

o

0.5

~
Q)

~ 0.4
E
o~
o0..
~
Q)
-0 0.3
~
o

20 10 5 o15

temperature Tc-T (K)

FIG.2.2. Order parameter as a function of
temperature for alkyl-cyanobiphenyles (neB).
n stands for the number of carbons in the
alkyl chain. From Ref.12.

c. Relationship between the order parameter and the macroscopic
material constants of the nematic liquid crystal

The orientational order parameter can be related with the
anisotropic part of various macroscopic properties of nematics.·
The most clear-cut example is the magnetic polarizability. Since
nematics are diamagnetic with small magnetic polarizability, the
local field correction can be to a good approximation ignored.
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Thus, the polarizability of a macroscopic body is simply the sum
of molecular polarizabilities. For a nematic consisting of simple
rods, we have

where Xv and XL are the magnetic polarizability of the nematic
in the directions parallel and perpendicular to the director,
respectively, Aij and AL are the polarizabilities of one rod
molecule parallel and perpendicular to its long axis, and c is the
number of molecules per unit volume of the nematic. Due to the
diamagnetic nature, XII and X..L are negative, and further because
of the aromatic rings, XL < XII.

The refractive index of a nematic is also anisotropic with
respect to the director. The refractive index along the optic
axis, i.e., the director, is written as ne, and that perpendicular
to it no. Although the local field correction is more significant
this time than in the case of magnetic polarizability, we can
roughly obtain

For obtaining a more precise relation, we have to resort to Vuks'
formula or such [13]. In nematics, the extraordinary index ne is
larger than the ordinary index no (because of the aromatic rings
again), and hence the optical properties of a uniform nematic are
identical with those of an "optically positive" crystal. The
refractive indices of 5CB have been accurately measured by Karat
and Madhusudana [12, see also Chapter 7]. The birefringence
~n=ne-no decreases from 0.185 at 20 K below the nematic-isotropic
transition point (Tc=308 K) to 0.116 at 1.2 K below Tc for light
of wavelength 632.8 nm. This reflects the degradation of the
orientational order as the temperature is increased.

In the case of dielectric constants, however, it is no longer
possible to draw a simple correlation with the order parameter as
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above. As shown in Table 2.1, nematic molecules involve
a group with substantial dipole moment. These dipoles contribute
to the dielectric property in a very complicated manner, which is
strongly dependent on the short range structure in nematics. In
the case of SCB, a cyano group exists, giving a dipole which is
almost parallel to the geometrical long axis of the molecular
core. So that, its dielectric constant is larger in the direction
of the director; the difference between the dielectric constants
parallel and perpendicular to the director,

(2.8)

is called the dielectric anisotropy. In fact, the dielectric
constants of SCB are £..L.-7 and £//-17 [2], and the dielectric
anisotropy is positive. In the case of MBBA, on the other hand,
the dipole moment is almost perpendicular to the long axis of the
molecule, thereby making the dielectric anisotropy negative.
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2.2 Curvature elasticity

In any microscopic region of a nematic, the preferred axis
can be precisely defined, giving rise to the local director. Even
in equilibrium, however, the director can vary from one position
to the other through the nematic by the action of external field
and bounding surfaces. If such a variation occurs on a length
scale much larger than the molecular dimension, the spatial
configuration of the director for given external field and
boundary condition can be analyzed with extreme rigor by means of
the elastic continuum theory of nematics. The elasticity
associated with the director configuration is conceptually very
different from the usual elasticity of solids, and we shall refer
to it as the "curvature elasticity." The theory of curvature
elasticity was originated by Zocher [14] and Oseen [15], and
completed in the present form by Frank [7].

The essential approach of the theory is completely the same
as in the elastic theory of solids; first, we define the
"curvature strain" and the "curvature stress," and assume a
linear relation between them similar to Hook's low. This
procedure can be systematically carried out by constructing a free
energy density as a quadratic function of the curvature strain in
such as way as to satisfy the symmetry requirement coming from the
fundamental structure of the nematic.

In the ground state, the director is uniformly distributed in
the nematic, so that the director field n( r) is a constant in
space. It should be noted here that, in the infinite sample of a
nematic, no preference exists for the director as long as they are
invariant in space. Therefore, the free energy of the nematic is
independent of n in the ground state. This property of the
nematic state is known as the Goldstone degeneracy [6,16], which
is connected with the spontaneous symmetry breaking at the
isotropic to nematic phase transition. Hence, the increase of
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free energy is only associated with the relative variation of the
director in space. The natural choice of the curvature strain is
the spatial derivative of the director field ncr).

2.2.1 Deformation free energy and the normal modes

Up to second order in the curvature strain, the scalar
function which is compatible with the uniaxial and inversion
symmetry of the nematic can be readily constructed by way of
direct calculations. We will not repeat the procedure here, and
thus those who are interested in it are referred to the standard
textbook of liquid crystals [1-6].

According to the Frank theory, the curvature strain can be
decomposed into three independent modes, splay, twist, and bend.
The director configurations corresponding to those modes are
illustrated in Fig.2.3.

splay

twist

bend

FIG.2.3. Principal modes of curvature strain
in the nematic phase.
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The free energy density fd associated with the principal
modes are written as follows:

(2.9)
where K1, K2, and K3 are the elastic moduli for the splay, twist,
and bend modes, respectively. These elastic moduli are usually
referred to as the Frank elastic constants. The actual values of
the Frank constants of known nematics lie around 10-11 N. And,
these constants are empirically known to satisfy the following
inequality:

(2.10)

Furthermore, according to the mean-field theory of the Frank
constants due to Nehring and Saupe [17,18], the Frank constants
are approximately shown to scale with the square of the order
parameter:

This relation can also be derived via a phenomenological approach
based on the lowest-order expansion of the elastic deformation
energy in terms of the tensor order parameter [8]. It should
however be emphasized that this relation is highly approximately,
and the higher order correction becomes in many cases important
[19,20],

In the absence of external orientational field, the
totalequilibrium director configuration is such that the

deformation energy,

Fd = f fd(r) a r . (2.12)

should be minimized under the prescribed boundary condition.
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2.2.2 Effect of electric field

Owing to the anisotropic dielectric property of nematics,
electric fields are effective to rotate the director. In the
presence of an electric field E, the electrical displacement D can
be written as

D = £.L E + ~ e ( n •E) n . (2.12)
So that, the dielectric energy density in the nematic medium Fe is
given by

(2.13)

In case the nematic is place in an electric field produced by
constant charges on a conductor, we should consider the process
that occurs under constant electrical displacement. Therefore,
from the last equation of the above, we see that, when the
dielectric anisotropy ~£ is positive as in SCB, the director
tends to align in along the direction of D. The actual
configuration of the director in an electric field is determined
in such a way as to minimize the sum of the deformation and the
dielectric free energies under the boundary condition.

One of the most remarkable examples of the field-induced
deformation of the director field may be the Freedericksz
transition [1] which occurs when an electric or magnetic field is
applied to a slab of nematic liquid crystal which is uniformly
aligned by the action of the substrates. If the dielectric
anisotropy is positive, and the initial orientation is planar,
i.e., the director parallel to the substrate, no deformation of
the director field does occur even in an electric field unless the
field strength is below some threshold value given by

(2.14)
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where Vth is the threshold voltage across the slab. And, as the
field strength is increased beyond the threshold, the director
field begins to deform from the uniform configuration. The
Freedericksz transition is in fact the basis of most liquid
crystal displays including TN type, and also offers important
means to probe the elastic property of the nematic [21].

2.2.3 Hydrostatic stress in deformed nematics

In ordinary liquids, the hydrostatic stress tensor is given
by a symmetric tensor -POij with p the pressure. In a

orientationally deformed nematic, the director deformation also
contributes to the hydrostatic stress, and gives rise to an extra
static pressure which should ultimately balanced by an external
force (not torque) applied at the boundary. This hydrostatic
stress of orientational origin has a serious effect on the
morphology of the interface of nematics [see Chapter 4].

The stress tensor in a deformed nematic can also be derived
by means of the common approach based on the virtual displacement
[1]. The resulting stress tensor can be written as

(2.15)

where (2.16)

In Eq.(2.15), summation over the repeated subscript k should be
performed.
obtain

Then, adding the contribution from the pressure, we

a!j = atj - po ij'

where a!j is the total hydrostatic stress tensor in a deformed
nematic, and is usually referred to as the "Ericksen stress

(2.17)

tensor." For a surface element dSj in the deformed nematic, the
force exerted on the element in the i-direction is given by
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fi=O"rjdSj'
For the nematic to be in the mechanical equilibrium, the

following condition must be satisfied:

00" ,e, / or, = O.
1J J

(2.18)

By a direct calculation utilizing the equilibrium condition of the
director profile, we can readily find that the pressure has to be
given by

per) = - fd(r) + constant. (2.19)

Finally, it may be worth noting that, when the deformation is
occurring only in one direction, say along the z-axis. It
immediately follows from Eqs.(2.1S) and (2.16) that

dO"zz = - 2fd, (2.20)

since fd is the second order homogeneous function of
Then, in combination with Eqs.(2.17) and (2.19), we find that the
Ericksen stress is written as

O"~z = - fd + constant. (2.21)

Because the above constant is the pressure at a point out side the
deformed region, it is clear that the director deformation exerts
a force on the confining boundary along the outward normal of the
interface; in other words, so as to expand the deformed volume.
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2.3 Landau-de Gennes theory of the isotropic to nematic
phase transition

In this section, we shall briefly review the elements of the
Landau-de Gennes theory, so as to facilitate the later application
to interfacial problems.

Let us assume, following de Gennes [1,8], that the free
energy density g(p,T,Oij) is an analytic function of the tensor
order parameter 0ij near the isotropic-nematic transition
temperature Tc (the clearing temperature). And, we expand g in
powers of 0ij up to fourth order. Since the free energy must be
invariant under uniform rotations of the system, all terms of the
expansion must be scalar.
condition is shown to be

The most general form satisfying this

1
g = go + --AO· .Oij12 13

(2.21)
where go is the free energy of the isotropic phase, which is
independent of 0ij' and as before, summa~ion over repeated indices
is implied. The coefficients of expansion A, B, and C are in
general functions of the temperature T and pressure p. However,
we shall postulate that Band C are constants, and A has a
temperature dependence of the form

*A = aCT - T ). (2.22)

The equilibrium state is characterized by the order parameter
which minimizes the free energy. The presence of the third order
term demands that the phase transition should be of first order.

By using the uniaxial tensor order parameter Eq.(2.4), we can
rewrite Eq.(2.21) in terms of the scalar order parameter:

111
g = go + - A02 - - B03 + - C04. (2.23)

2 3 4
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The equilibrium value of 0 is given by that which makes the free
energy minimum. The dependence of g onO at several temperatures
are shown in Fig.2.4. We see that there is a discontinuous phase
transition at a temperature Tc slightly above T*. The source of
this first-order phase transition lies, as mentioned above, in the
fact that there exists a third order term in Eq.(2.23). This is
related to the fact that the state with 0 and that with -0 are not
equivalent in the case of nematics. As immediately obvious from
the definition of the order parameter, if the state with positive
o is optically positive, the state with negative 0 is optically
negative.

The actual value of 0 corresponding to minimum free energy
can be derived from Eq.(2.23) as

o = 0,

T<Tc·
(2.24)

The clearing temperature Tc is given by

(2.25)

and hence the order parameter at Tc by

(2.27)

r*
Oc = 2B/3C. (2.26)

Furthermore, the latent heat
of the transition is expressed Q
as

The temperature T* cor-
responds to the limit of
metastability of the isotro-
pic phase. It should be
possible to supercool the FIG.2.4. Landau-de Gennes free energy

density as a function of the order
parameter for various characteristic
temperatures.
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isotropic liquid to this temperature. *Below T, the isotropic
phase becomes absolutely unstable with respect to any degree of
fluctuation of the order parameter. Similarly, it is also
meaningful to consider the temperature at which the nematic phase
becomes absolutely unstable. *This temperature, Tn' is given by

(2.28)

Coles [22] determined the parameters of the theory for n-
alkyl-cyanobiphenyls by means of the pretransitional Kerr effects
in the isotropic phase. His results for SCB are listed in Table
2.2.

TABLE 2.2. Parameters in Landau-de Gennes free
energy density for SCB [Ref.22].

Tc - T* 1.1±O.3 K
a (O.13±O.Ol)X106 J/m3K
B 1.6±O.2 J/m3K
C 3.9±O.3 J/m3

Oc O.27±O.Ol
q O.47±O.lS)X103 J/kg

The value of Oc has been calculated via Eqs.(2.2S) and (2.26) and
shows a good agreement with the result of the direct optical
measurement [12, see Fig.2.2l. Further, since the latent heat of
the crystal to nematic transition is about 17X103 J/kg, we see
that the latent heat of the nematic-isotropic transition is about
one order smaller than that. This is indeed one of the most
dramatic feature of the transition, and indicates the weakly
first order nature of the nematic-isotropic transition.
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Chapter 3

CONCEPTS IN THE SURFACE-INDUCED

ALIGNMENT OF NEMATICS

The surface-induced alignment of nematic liquid crystals is,
as we have seen in Chapter 1, a kind of interfacial phenomenon
known for over 70 years. Especially, in the last two decades, the
surface-induced alignment has been a matter of great concern for
both scientists and engineers, thereby stimulating quite a few
studies in the field.

The spectrum of these researches are however enormously wide,
ranging from empirical search for good aligning substrates to
theoretical studies on the origin of alignment. And, still today,
there seems to exist a large gap between the theoretical and the
experimental sectors. As mentioned in Chapter 1, this article is
an attempt to fill in the gap by setting forth an appropriate
phenomenological framework on which various observations related
to the surface-induced alignment can be settled and to which
microscopic theory can be converged. To construct a good
phenomenology, it is first of all necessary to figure out what is
common to any interfacial orientation of nematics and what is not.
The first step in so doing is to clarify what does the surface-
induced alignment mean. Above all, we must have a language
appropriate to express the point, before we start to discuss over
the problem.

This section is devoted to the critical review of the
conventional concepts concerning the surface-in~uced alignment,
with a view to increasing our vocabulary and seeking more powerful
words. We also present some facts and conjectures about the
surface-induced alignment by focusing on the two most commonly
employed techniques, "rubbing" and "oblique evaporation" methods,
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with which we shall exclusively concern ourselves later.
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3.1 Pretilt angle and the anchoring strength

The surface-induced alignment of practical significance can
be classified into three basic types as shown in Fig.3.1.

00 000000 0
0000 00000

planar tilted homeotropic

FIG.3.l. Basic types of the surface-induced alignment.

In the first type, the director is aligned parallel to the
substrate, and this type of alignment is called "planar." In the
second type, the director assumes an oblique angle with respect to
the substrate surface, we call this type the "tilted" alignment.
Finally, in the third type, the director is oriented normal to the
substrate. This is referred to as the "homeotropic" alignment.

To be more quantitative, the alignment of the director on a
solid substrate is schematically depicted in Fig.3.2. The
fundamental quantity associated with the alignment is, as noted
above, the angle that the director is making with the substrate,
Be and .e' We refer to these angles as the "pretilt angles,"
and the former is especially the "polar" pretilt angle and the
latter is the "azimuthal" pretilt angle. The concept of the
pretilt angle is inevitably connected with the surface-induced
alignment. And, it is sometimes used as a synonym of the surface-
induced alignment.

In the operation of displays, the pretilt angle plays a

3 - 3



decisive role. So, various
accurate methods have been
devised for their
measurements soon after the
liquid crystal display become
realistic. The commonest and
most accurate method is the
magnetic null method [1],

z

with which one can easily
determine the pretilt angle
to an accuracy 0.1 degree.

Another important concept associated with the surface-induced

FIG.3.2. Pretilt angles at a nematic
interface.

alignment is the anchoring strength. This was first introduced by
Rapini and Papoular [2] to quantitatively account for the strength
with which the director is restricted to the easy axis imposed by
the substrate. They postulated that the interfacial free energy
or tension of the nematic-substrate interface was written as a
function of the actual angle of the director at the interface in
the following form:

(3.1)

where 80 and ~o are the actual polar and azimuthal angles of the
director at the interface, respectively. Here, E~ and E: are the
positive constants respectively called the polar and azimuthal
anchoring strength coefficients, or the polar and azimuthal
anchoring energies. Obviously, the interfacial tension r assumes
a minimum value when the director coincides with the easy
direction, i.e., 80=8e and ~0=8e' As the anchoring energies
increase, the director becomes harder to rotate from the easy
direction.

Equation (3.1) is usually used in conjunction with the Frank
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elastic energy Eq.(2.12), and offers a basis to quantitatively
take into account the effect of aligning substrate on the director
configuration within the nematic in contact with it. As will be
fully discussed in Chapters 4, 5, and 7, the anchoring strength is
certainly an important concept characterizing the orientational
property of a nematic interface. However, in comparison with the
pretilt angle, it is rather abstract, and is also hard to measure
experimentally. In fact, it is only recently that reliable
measurement of the anchoring strength has become possible.

These two quantities do not exhaust all the concepts relevant
for the characterization of nematic interface. Among other, we
can conceive that the orientational order may be different in the
interfacial region from that in the bulk, because of the aligning
force exerted by the substrate. It is also expected to serve as a
characterizing parameter. Indeed, we will emphasize the
importance of the surface order parameter as an ingredient of the
phenomenological description of a nematic interface.

Since the surface-induced alignment is unmistakably a
macroscopic interfacial phenomena, it is not fair and insufficient
to restrict the attention to those parameters which have direct
connection with the orientation of molecules. Namely, we should
also pay attention to such concepts as "adsorption," "surface
entropy," and "surface energy" which are the central variables in
the phenomenological description of the interfaces of ordinary
liquids. We will theoretically pursue this direction in Chapter
4, and show that thermodynamically closed treatment of pretilt
angle and anchoring strength is inevitably connected with those
concepts.
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3.2 Methods of surface-induced alignment and proposed
mechanisms of alignment

3.2.1 Rubbing and oblique evaporation techniques

Today, we know quite a few methods to achieve uniform
alignments of nematics shown in Fig.3.1. Those techniques were
thoroughly reviewed by Cognard [3]. In assessing wide variety of
alignment techniques with emphasis on reproducibility and
reliability, he recommended the following methods for each type of
alignment:

(1) planar: rubbing a polymer film,
oblique evaporation of SiO [4].

(2) tilted: oblique evaporation of SiO at a glancing angle,
crossed evaporation of SiO,
application of homeotropic aligning agents on
obliquely evaporated SiO.

(3) homeotropic: application of surface active agents such
as lecithin, or silane coupling agents.

Those methods are useful both in industrial and in laboratory
applications. Especially, since the planar alignment is a
prerequisite for TN displays, the rubbing and the oblique
evaporation methods are of great practical importance. Although
rubbing is carried out by means of a sophisticated "rubbing
machine" [5] in industries, rubbing by hand is still effective in
laboratory for research purposes. The oblique evaporation of SiO
is also an easy yet highly reproducible method. In this thesis,
experimental works are largely concentrated on the substrate
treated by these two methods. So, we shall here describe the
actual procedure in some detail below.
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In Fig.3.3, the process
of rubbing is illustrated. A
glass slide coated with poly-
vinylalcohol (PVA) is rubbed
in one direction with lens
paper. The weight is normal-
ly 45 g. For preparation of
PVA coating, 1 wt% aqueous
solution of PVA is deposited
through 0.5 #m millipore

lens paper

substrate

rubbing

filter on a spinning glass
substrate. The deposited
film is dried at 80 ~ for 30
min. The thickness of the resulting PVA film is about 600 A.

The oblique evaporation
of SiO can be made in an

FIG.3.3. Rubbing arrangement.

ordinary vacuum evaporation
(Fig.3.4). In our laboratory,
powder of SiO is heated in a

tTantalum chimney in a vacuum
of about 10-6 Torr. The
glass substrate is inclined
from the direction of deposi-
tion. According to the angle
of inclination 8, the resul-
ting film is here denoted as
SiO(8). The deposition rate
is controlled to be 7 A/s in
terms of a substrate inclined
to 60 Thedegrees.
evaporated is continued for
90 s.
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Although rubbing technique leads, in most cases, to the
formation of near planar alignment with very small pretilt angle,
the alignment on an obliquely evaporated SiO is known to yield
planar as well as tilted alignments depending on the deposition
angle 8 [6,7]. When 8<450

, random planar alignment results,
but when 450 <8<720

, the director aligns in a direction
perpendicular to the incident beam with a negligible polar pretilt
angle. Furthermore, when 8>750

, the nematic is oriented toward
the direction of the deposition with the pretilt angle ranging
from 15 to 250 [8,9]. In the last case, the preti It angles are
also known to be slightly dependent on the deposition condition
and the liquid crystal used [10]. And it undergoes a marked
temperature dependence near the nematic-isotropic transition point
[11-13].

3.2.2 Conjectures on alignment mechanisms

Some conjectures have been presented as to the alignment
mechanism on evaporated SiO films. The most popular idea is based
on the structural anisotropy inherent in the obliquely deposited
films, and explains the alignment as resulting from the
minimization of the curvature elastic energy induced by the
anisotropic structure of the film, i.e., Berreman's groove
mechanism [14]. Although such anisotropic or columnar structures
have been confirmed with electron microscopes [15-19], it is as
yet hard to estimate the significance of the film structure
relative to the physico-chemical interaction between the solid and
the liquid crystal [20, 21].

On the other hand, the alignment mechanism on a rubbed
substrate seems to be even more obscured. It was proposed long
ago by Chatelain [221 that the orientation results from dipole
interactions between an ordered layer of adsorbed fatty
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contaminants and the nematic molecules. However, he did not rule
out the role of structural modification of the substrate as
conceived as regards the evaporated SiO films. What is even more
confusing here is the presence of polymer film, in which polymer
chains may to some extent reorient in the rubbing direction,
producing aligning force in similar manner as a stretched polymer
film aligns liquid crystals.

Thus, the mechanism of uniform alignments on these substrates
is still a matter speculation. The correct answer may be
something like that both structural and physico-chemical
effects are important (of course in a varying degree) for the
surface-induced alignment of nematics. However, this is not at
all an answer to the original question. At present, it seems that
no one knows what a truly well-posed question is like and what
form the correct answer would take. Setting an either-or type
question may not be fruitful.
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Chapter 4.

THERMODYNAMICS OF

THE NEMATIC LIQUID CRYSTAL INTERFACE

In this chapter, we will concern ourselves with the
thermodynamic consequences of the orientational anisotropy of
nematics on their interfacial properties [1]. Our primary
objective here is to extend the Gibbs thermodynamics of fluid
interfaces [2], originally developed for ordinary fluids, so as to
encompass the interface between the nematic and another non-
nematic media by taking explicit account of the orientational
degrees of freedom inherent in the nematic phase.

The counter phase being in contact with the nematic may in
principle be fluid or solid, but we shall always assume here that
their bulk (thermodynamic) states are not influenced by the
orientational degrees of freedom of the nematic as long as other
thermodynamic variables are held constant. This assumption appears
almost trivial in the case of "isotropic" fluids, and is also
expected to remain realistic for highly refractory solids such as
those which are in extensive use as a substrate for nematic liquid
crystals. However, for those phases, including most of the liquid
crystals, which have an elastic property comparable to that of
nematics, this assumption might become far from being a good one.
Accordingly, the intriguing problems concerning the interface
between a nematic and a smectic phases, etc. must be excluded.

In this chapter, we will restrict our arguments to an
interface between a nematic and a rigid solid or an isotropic
fluid (not necessarily the "isotropic phase" of the nematic in
question). Since both cases can be treated in an almost parallel
fashion, we shall exclusively, unless otherwise noted, discuss the
case of a nematic in contact with an isotropic fluid, which allows
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for a thermodynamically more complete treatment than the other.
By describing the orientational state of the bulk nematic by

means of the Frank theory of curvature elasticity and rigorously
applying the Gibbs recipe, we are automatically led to the
concept of the "surface of extrapolation." And, it is shown that
the separation between the surface of extrapolation and the
surface of tension should be identified with the extrapolation
length, which as mentioned in Chapter 3 is a measure of the
orientational anchoring strength at a nematic interface.
Furthermore, we are able to give a thermodynamically and
mechanically consistent definition of the anchoring strength as a
natural generalization of the Rapini-Papoular formalism.

The present thermodynamic theory allows us to connect the
orientation-related surface parameters of a nematic such as the
pretilt angle and the extrapolation length with the common
thermodynamic variables like temperature, pressure, and
concentrations; thereby it helps us to appreciate and predict on a
very general ground the behavior of those surface parameters in
response to the changes of extraneous conditions. In particular,
the changes of the adsorption and the surface entropy associated
with the rotation of the nematic director are discussed in detail.

We also investigate the thermodynamic basis and implications
of the alignment transition at nematic interfaces. Especially,
when the pretilt angle or the anchoring strength undergoes a
critical change in response to the variation of temperature and/or
concentrations, the thermodynamics gives rise to criteria that the
corresponding critical exponents have to obey.

We begin our argument with summarizing the elements of the
Gibbs surface thermodynamics to an extent needed for later
arguments, mainly following the treatment due to Hill [3]. Those
who are familiar with the surface thermodynamics of ordinary
fluids may skip to Section 4.2.

4 - 2



------~----------

4.1 Gibbs' thermodynamics of fluid interfaces

As intuitively evident, an interface existing between a
couple of real fluids is by no means a simple mathematical surface
of discontinuity. Rather, when viewed closely, there must be a
transition layer with finite thickness, over which the properties
of the fluid change continuously from those of one phase to those
of the other. Consequently, in order to apply the recipe of
classical thermodynamics to a fluid interface, one needs to devise
some tricks to cope wit~ this inherent inhomogeneity.

The thermodynamics of a fluid interface has been thoroughly
formulated by Gibbs[2] and his followers[3-6] in the case of
ordinary "isotropic" fluids, by partitioning the extensive
variables of the whole system into the bulk and the interface
parts utilizing the concept of either the "dividing surface"[2-S]
or the "surface phase" [6]. The former is an imaginary surface of
demarcation with infinitesimal thickness, up to which the fluids
in contact are assumed to be completely homogeneous, while the
latter refers to a hypothetical "third phase" which are taken to
embrace the inhomogeneous region associated with the interface. It
is notable, at this point, that since both of these concepts are
merely an instrumental construct to facilitate further
thermodynamic treatments, none of their results, as long as they
are physically relevant, depends on which pathway is to be
actually adopted to reach them [7-9].

An interface between fluids may be planar or curved in
equilibrium depending on the environmental conditions, as we often
experience in daily life. The Laplace equation indeed tells us
that the curvature of an interface should increase in proportion
to the pressure difference across the interface (see 4.1.4).
Though this is essentially a condition of "mechanical"
equilibrium, the concomitant morphological variation has a rather
far reaching consequence on the thermodynamic treatment of the
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interface. For example, as we shall see later, the interfacial
tension can be defined uniquely (independent of the position of
the dividing surface or the surface phase) only when the interface
is planar. But when the interface is curved, the numerical value
of the interfacial tension varies with the choice of the dividing
surface, reflecting the fact that the "area of the interface" is
no longer a well-defined property. In the case of nematic liquid
crystals, we have seen in Chapter 2 that the pressure and hence
the stress tensor change according as the nematic is
orientationally deformed. Therefore, it becomes in general
necessary for our purpose to consider curved interfaces. In view
of the application to a liquid crystal interface, we will here
focus our attention to a "cylindrical interface", following the
Gibbs approach based on the dividing surface.

4.1.1 The dividing surface and the definition of surface excess

Suppose a cylindrical interface between two distinct ordinary
fluids (a and b), which are
in complete thermodynamic and
mechanical equilibrium (see
Fig.4.1). We assume here that
the fluid is uniform over

tric with the interface;
cylindrical surfaces concen-

namely, the contours of equal
density, etc., coincide with
those cylindrical surfaces.
We consider a fan-shaped
region with unit thickness
subtending an angle
take the cylindrical

w. We
bounda-

FIG.4.1. Geometry of cylindrical
Interface.
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ries with the radii, Ra and Rb, as shown in Fig.4.1; at this
stage, the choice of Ra and Rb is arbitrary, provided they are
well inside the bulk phase. Then, the volume V of the fan-shaped
region within those cylindrical boundaries is given by

(4.1)

We place the dividing surface at the radius R as illustrated
in Fig.4.1, dividing the volume V into Va and Vb as

V = Va + Vb
where

Va = W(R2 - Ra2)/2,

(4.2)

and

Now let X be an arbitrary extensive variable of the system
pertaning to the volume V, and xa and xb be its densities in the
bulk phases, a and b, respectively. We define the surface excess
XS of the property X via

Namely, the surface excess stands for the residue when the fluids
in contact are assumed to be completely bulk like right up to the
dividing surface. In general, therefore, the surface excess is
dependent on the position of the dividing surface.

4.1.2 Thermodynamics of a fluid interface

We consider the Helmholtz free energy F of the fluid within
the volume V, and assume that F is a function of T (the absolute
temperature),
species N.

1

Ra' Rb,
(i=l r r :

w, and the number of molecules of i-th
the fluid in question is assumed to be of

multicomponent, comprised of r different species. We denote the
pressures in the bulk fluids by Pa and Pb (they are not in general
identical for curved interfaces, as mentioned above). The entropy
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and the chemical potential of the i-th species are written as S
and #i' respectively.

For infinitesimal changes of T, Ni, Ra' Rb, and w, the
change of the Helmholtz free energy is written as

(4.4)

where
71 = (oF / 0w ) T N R R

, i' a' b '

In Eq.(4.4), the last three terms represent the external work
associated with the geometrical changes of the fluid volume. In
particular, 7ldw represents the work when the angle of the cone
is changed, while other variables are kept constant; this can
obviously be defined without ambiguity regardless of the choice of
the dividing surface. Integrating Eq.(4.4) with respect to w
under fixed T, #i' Ra' and Rb, we obtain

(4.5)

By using the area of the dividing surface A=wR instead of w
and noting Eqs.(4.2) and (4.5), we can rewrite Eqs.(4.4) as

dF = - SdT + L u idNi
- PadVa - PbdVb + rdA + A~dR,

(4.6)

where r and ~ are given by

(4.7)

(4.8)

Note that Eq.(4.7) is just the expression to be obtained when
Eq.(4.6) is integrated at constant T, #i' R, Pa, and Pb. Then by
using Eq.(4.7) in Eq.(4.6), we arrive at the Gibbs-Duhem equation
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which reads

Adr = - SdT - L Nidtti
+ Va dPa + Vb dPb + A 1; dR .

(4.9)

It is clearly seen from Eq.(4.6) that r has a meaning of the
"interfacial tension", expressing the free energy increase
resulting from a unit increase of the area of the interface. As
readily found in the standard textbooks of thermodynamics [46],

g = F - L tt.N.
1 1

(4.10)

is the thermodynamic potential, which in a bulk fluid reduces
to - PV. Hence Eq.(4.7) can be rewritten as

(4.11)

This expression shows that the interfacial tension is just the
surface-excess thermodynamic potential per unit area gS/A.

It is worth emphasizing at this point that the interfacial
tension of a curved interface depends on the position of the
dividing surface R, as can be seen in Eqs.(4.7) and (4.8);
in Eq.(4.6), however, the free energy itself is independent, as it
should be, of the choice of the dividing surface, because of the
presence of a term which depends on dR. This feature originates
from the fact that the area of a curved interface can not be given
unambiguously, independent of the dividing surface, as in the case
of a planar interface. In fact, when the interface is planar, so
that Pa = Pb and R-+OO, it is easily confirmed in the above that
the interfacial tension does become independent of R.

In the bulk of a "homogeneous" multicomponent fluid, the
pressure P satisfies the Gibbs-Duhem equation,

dP = sdT + L Pi d tt i' (4.12)

where s and Pi are the entropy and the molecular number
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densities, respectively. Applying this equation to the present
bulk fluids a and b, we may rewrite Eq.(4.9) in a surface-
thermodynamic form:

(4.13)
where

On the unit area basis, Eq.(4.13) is further rewritten as

d r = - ssdT - L I", dJl. + ~ dR,
1 1

(4.14)

where ri = N~/A represents the adsorption per unit area of the
i-th species with respect to the dividing surface, and the surface
entropy (that is, the surface-excess entropy per unit area) is
here denoted by the same symbol SS as before for economy of
notation. Equations (4.11) and (4.14) constitute the basis of the
thermodynamics of a fluid interface.

4.1.3 Thermodynamic relations

A. Gibbs adsorption isotherm
We shall first concentrate our attention the processes which

occur at constant temperature, in order to see how the variation
of the fluid composition influences the interface property.
According to the Gibbs-Duhem equation for a bulk phase, cf.
Eq.(4.12), the chemical potentials are shown under this condition
to satisfy

P 1du 1 + p 2d Jl 2 + p 3d Jl 3 + ••• = dP. (4.15)

This equation applies to both phases being in contact.
subtracting the equation for the b phase from that for

Then,
the a

phase, we obtain (since chemical potentials are identical in both
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phases)

(4.16)

where

By using this relation, Eq. (4.13) is reduced at fixed temperature
to N s

~P i NSAdr = ~ d(P -P ) - ~ [ N~ dJli + A l,;' dR,
~P 1 a b 1 ~P 1 1 (4.18)

where we have assumed ~P 1~0. It is noteworthy that the term in
the square brackets is independent of the choice of the dividing
surface. To see this property, we would recall the definition of
surface excess, i.e.,

Ni = PaiVa + PbiVb + N~.
Differentiating by R the both sides of this equation, we
immediately have

o = A ~Pi s+ - Ni,dR
d

which is valid for any i, since Ni's are by definition constants
independent of R. Eliminating A with the use of the equation
corresponding to i=1, we reach the desired result:

d

dR
N~ -
1

~P i d

~P 1 dR
N~ = 0, (4.19)

which shows that the quantity in question is really an invariant.
It can also be confirmed directly by way of Eq.(4.7) that the
remaining part is independent of R, as required.

1. Two-component fluid
It is now convenient to take the dividing surface in such a

way that the adsorption of the first component vanishes, i.e.
r1=0. So, we can simply write Eq.(4.18) as
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(4.20)

where the superscript "1" implies that r1=0 (at R=Ro). Thus, we
obtain

(4.21)

This is the Gibbs adsorption equation for a curved interface. In
the case of a plane interface, the left hand side becomes
independent of R, resulting in the standard form of the Gibbs
equation. It must be remarked here that the "Gibbs phase rule" [8]
indicates that the region of a two-phase coexistence of a two-
component fluid can be spanned by either two or three degrees of
freedom depending on the interface is planar or curved; so that
when the temperature is fixed, at least one of the pressures of
the coexisting phases has to change as the composition is varied,
although the pressure does not apparently appear in Eq.(4.21).
Namely, in the two-component case, it is impossible to fix
temperature and pressure all together, while changing the
concentration.

To be a bit more specific, let us consider a liquid-vapor
interface of a two-component fluid, regarding the vapor phase to
be an ideal gas. Then, by denoting the partial pressures of the
first and the second components by PI and P2' respectively, we can
write the chemical potentials as [7]

i=1 or 2, (4.22)

where k is the Boltzmann constant.
Eq.(4.21), we get

Using this expression in

~(or ) I
kT OP 2 T,R R=R0

= - lr 2· (4.23)
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This equation shows clearly that when the introduction of the
second component is to reduce the tension of the interface, there
must be a net positive adsorption of the second component at the
interface.

2. Three-component fluid
Next we consider an interface between two immiscible liquids,

each containing a small amount of solute (third component) as
illustrated in Fig.4.2. In contrast to the two-component case,
the phase rule now allows the temperature and pressure to be kept
constant even when the concentration of the third component is
changed. This case is of particular importance for our purpose,
in that it essentially

3 _
--------- --

simulates the liquid
crystal-substrate inter-
face with which we are
presently concerned. In
this respect, we will
refer to the fluids of
first and second compo-
nents as the "substrate"

2

..------ -- ---
radial distance R

and the "solvent", re-
spectively, here.

We imagine that the
solution is ideal with respect to the third component, so that we

FIG.4.2. Concentrations near the
interface.

can write the chemical potentials of the solvent and the solute as

kT c, (4.24)

/.l 3 = kT ln c + (4.25)

where c = p 31 P 2 is the concentration of the solute, and /.l 0

denotes the chemical potential of the pure solvent. lj) is a
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function only of the temperature and pressure. It is easily
verified that Eqs.(4.24) and (4.25) indeed satisfy the Gibbs-Duhem
equation [Eq.(4.12)] at fixed temperature and pressure.

Upon taking the dividing surface such that r1=o, we
substitute Eqs.(4.24) and (4.25) into Eq.(4.18), and obtain

c((ar) I kT1r2)=_lr3.kT ac T,P,R R=Ro
(4.26)

This equation shows that the adsorption of the solute at an
interface between immiscible liquids is dependent on the
adsorption of the solvent as well as on the susceptibility of the
interfacial tension to the solute.

It must be finally pointed out that if it can be assumed that
the third component is not soluble in the substrate phase (made up
of the first component), the solute does not affect the
thermodynamic state of the substrate fixed at constant temperature
and pressure. As a result, by taking the dividing surface at the
zero adsorption of the solvent, we can write the adsorption
equation for the three-component fluid in the same form as that
for the solvent-solute two-component system, now at a constant
pressure.

B. Surface entropy and surface energy
Let us consider an interface appearing in a single component

fluid, e.g. liquid-vapor, nematic-isotropic, etc. With a dividing
surface taken at the pOint of zero adsorption, we have from
Eq.(4.14)

(4.27)

In the case of a plane interface, the left-hand side of
this equation is an absolutely measurable quantity, and when it is
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negative, the surface entropy should be positive; this implies
that the interfacial transition layer is less ordered than the
bulk phase. It is indeed a common observation that the surface
tension of a pure liquid, away from the liquid-vapor critical
point, approximately follows a linear relationship with
temperature [10]:

r = r 0 - So T, (4.28)

with So being a positive constant [Fig.4.3]. Then, it follows
from the thermodynamics that So is just the surface entropy SS.

The internal energy U of the system is related to the
Helmholtz free energy F and the thermodynamic potential 0 via
U = F + TS = 0 + L 11.N. + TS. Therefore, by taking the surface

1 1

excess per unit area, we obtain

as

US = r + L Iliri + TSs. (4.29) ;:::....

c
For a single component fluid with 0

(/)
cthe dividing surface taken at zero Q)-adsorption, this equation is Q)
(.)

crewritten, in view of Eq. (4.26), -•...~
(/)

r - temperature T

(4.30)
FIG.4.3. Typical temperature
dependence of surface tension.

When the surface tension satisfies Eq.(4.28), this equation
reveals that the surface energy US simply equals ro, which is a
constant independent of temperature. This implies that the linear
temperature dependence of surface tensions is essentially an
entropic effect which derives from the enhanced structural
"disorder" of the surface region compared with the bulk phase.
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4.1.4 The Laplace equation and the surface of tension
As already mentioned, the interfacial tension of a curved

interface can not be defined uniquely without reference to the
dividing surface only from a thermodynamic point of view.
However, the surface or interfacial tension is originally a
"mechanical" concept which was first introduced by Young [11] to
expound the balance of force at an interface. It is, therefore,
of interest to see how the thermodynamic and the mechanical
concepts of interfacial tensions are connected to each other.

Consider now the mechanical equilibrium of the region shown
in Fig. 4.1. Let us also
imagine that an interfacial
tension r is acting just at
the interface located at R
[see Fig. 4.4], and we con-
ceive that the pressure is
uniform within each region
divided by the interface.
The condition of mechanical
equilibrium can be most FIG.4.4. Definition of the

surface of tension.
readily obtained by con-
sidering a shell of infinitesimal thickness around the interface.
Then, the region in question is now comprised of three parts, two
bulk phases and the shell. Obviously, the bulk phases separated
by the shell should be in equilibrium in themselves. Therefore,
it is only necessary to consider the equilibrium of the shell.
Because the total force acting in the x direction should be zero,
we obtain

df/J 2rsinw/2,

2rsinw/2,
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from which we obtain the "Laplace equation" for a cylindrical
interface [5]:

(4.31)

As it appears, the Laplace equation can be viewed, on the one
hand, as relating the curvature of an interface to the pressure
difference across the interface. On the other hand, however, it
can also be regarded as giving a "mechanical definition" of the
interfacial tension r in terms of the pressure difference and the
curvature. Unfortunately, the interfacial tension appearing in
Eq.(4.31) is not necessarily identical with that defined
thermodynamically [Eq.(4.7)]; indeed, at a fixed pressure
difference, the former is linearly dependent on R, while the
latter is nonlinearly. Only in the limit of plane interface, the
Laplace equation becomes indeterminate and is thus trivially
compatible with the thermodynamic definition.

We have derived the Laplace equation as if there were an
infinitesimally thin boundary-layer which can sustain tensile
force. So, the above mentioned fact indicates that not all the
thermodynamical interfacial tensions do not allow a simple
interpretation as a tensile force acting at the dividing surface.
In order to reconcile the mechanistic and the thermodynamic views
of an interfacial tension of a curved interface, we need therefore
to take the dividing surface at a special point called the
"surface of tension." By comparing the Laplace equation with the
thermodynamic formula Eq.(4.8), we see that the surface of tension
corresponds to the dividing surface for which

(4.32)

where r is the thermodynamic interfacial tension given by
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Eq.(4.7). We will denote by Rs the R which satisfies the above
equation and the corresponding interfacial tension by rs. From
Eq.(4.32), it readily follows that on taking the dividing surface
at Rs' we can treat a curved interface in a formally similar
manner as a plane interface. As will be shown later, this
property still holds for a nematic interface; however, Eq.(4.32)
becomes no longer true, because of the orientational anisotropy of
the nematic liquid crystal.

The interfacial tension depends in general on the curvature
of the interface. In fact, we know from Eq.(4.14) for a single
component fluid with the dividing surface taken at the point of
zero adsorption that

(4.33)

On the right-hand side, dRo represents the change of the curvature
of the interface induced by the variation of pressure, etc.; do
not confuse it with the (non-physical) formal change of the
dividing surface. When the surface of zero adsorption coincides
with the surface of tension, the term in the square brackets
vanishes due to the Laplace equation, and hence the interfacial
tension becomes an invariant irrespective of whether the interface
is planar or curved. Conversely, therefore, unless Ro always
equals Rs'
curvature

the interfacial tension is to actually vary as the
theis changed. In order to take a closer look

we rewrite the interfacial
at

curvature dependence, tension,
Eq. (4.7), as

1 R
r = -r ( - +

2 s Rs
~ ) ,
R

(4.34)

where we have used Eq.(4.31). Then, by taking the total
differential of the above at R=Ro and comparing it with Eq.(4.33),
we have
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=
Ro2 - R 2s
R 2 + Ro2s

(4.35)

This equation describes how the tension of a cylindrical interface
changes as the fluid cylinder thins.

For the more interesting cases of spherical drops, the above
argument can be straightforwardly extended to give the Laplace
equation for a spherical interface

(4.36)

and

= (4.37)
,

which corresponds to Eq.(4.35); the thermodynamic interfacial
tension of a spherical interface is given by the same formula
Eq.(4.7) as that for the cylindrical interface. Formal integra-
tion of Eq.(4.37) leads to the Gibbs-Tolman-Koenig-Buff equation
[5] for the curvature-dependence of the interfacial tension.

Up to first order in 1/Rs'
rewritten as

Eqs.(4.35) and (4.37) can be

=
for cylinders,
for spheres,

(4.38)

where
000 = lim (Ro - Rs>'R -+00

S

Hence, integrating Eq.(4.36), we obtain

rs = (
r s exp(-ooo/Rs)'
r s exp(-2000/Rs)'

for cylinders,
for spheres,

(4.39)

where ro denotes the tension of the plane interface. As both Ro
and Rs lie within the interfacial transition layer, the above
equation shows that the interfacial tension remains virtually
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constant, until Rs becomes so small as to be comparable with the
thickness of the transition layer.

Since the liquid-vapor interface is known to be a few-
molecular layer thick at a point far from the critical pOint[13],
the interfacial tension can be, to a good approximation, assumed
constant for a system of macroscopic dimension. In the case of a
nematic-isotropic interface, however, the interfacial tension is
on the order of 10-5 J/m2 [13-18], about 1/1000 of the surface
tension of ordinary liquids, and also the thickness of the
transition layer, which is mostly governed by the orientational
correlation length, reaches a few hundred angstroms due to the
nearly second-order nature of the nematic-isotropic transition
[19,20]. Hence, the curvature effect is expected to manifest
itself even in relatively large droplets and thereby play a
significant role in the nucleation of new phase at the nematic-
isotropic transition.
matter at present.

However, very little is known on this
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4.2 The equilibrium shape of a nematic interface

In the above argument, we have seen that the shape of a fluid
interface is determined such that the mechanical equilibrium of
the phases in contact is established, and among others that the
shape itself brings about a deep consequence on the thermodynamic
treatment of the interface. So,
to have a fair understanding of the geometry of the interface in

We will

it is obviously quite important

now briefly
question, prior to detailed thermodynamic discussions.

investigate, from a mechanical view point, the
relationship between the degree of deformation occurring in the
nematic and the resulting distortion of the interface which is
assumed to be planar in the absence of deformation [see Fig.4.S1.

- - -- --- - ---------- - --

FIG.4.S. Mechanical equilibrium
of an interface between an
isotroic fluid and an orien-
tationally deformed nematic.
air denotes the rr-component
of the Ericksen stress tensor.
The interfacial tension y is
acting at the surface of ten-
sion located at R.

pressure
The overall shape of the interface depends not only on the

difference across the interface but also on what
conditions are imposed at the circumference of the interface; in
this respect, the cylindrical interface we have considered in the
former section turns out to be a special case which may be
attained when the interface is suspended over a long rectangular
hole. In general, it can be shown that the interface adopts a
shape which has a constant "mean curvature," as well known in the
equilibrium-shape problem of a suspended soap film[12]. At
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present, however, we imagine, without going into the detail, that
a proper boundary condition is always imposed at the circumference
so as to let the interface be cylindrical when the nematic is
deformed. We also conceive that the volume of the nematic in
question is always in contact with a large reservoir of the
undeformed nematic held at temperature T and pressure P with
prescribed concentrations. We shall further assume that the phase
with which the nematic is in contact is an isotropic fluid whose
thermodynamic state can be completely specified by its
temperature, pressure, and concentrations, so that the state of
this phase is indifferent to the orientational state of the
nematic once the state of the reservoir is given.

We take the cylindrical polar coordinate with the z-axis
parallel to the interface, and assume, as before, that the
property of the system, including the orientation of the nematic
molecules, is invariant with respect to the rotation and
translation about the z-axis; so that we are to consider only the
case of an interface which imposes a uniform orientational
boundary condition on the nematic being in contact.

Now, let a~r be the rr-component of the Ericksen stress.
Then by applying the same argument as used to derive the Laplace
equation in the last section, we can write down the condition of
the mechanical equilibrium of the interface as

(4.40)

where r is the interfacial tension of the deformed nematic
interface, which has as yet been defined. From the hydrostatics
of nematics described in Chapter 2, we can rewrite Eq.(4.40),
under the condition of no external field, as

d- a rr - f d + P - Pb = r /R. (4.41)

where P stands for the pressure inside the nematic reservoir.
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From our requirement that the Lnterf ace be planar (R-+oo) in the
absence of deformations, we must have Pb = P; the first two terms
disappear when the nematic is in the undeformed state and hence
the interface is planar. Since P and Pb are constant regardless
of the degree of deformation (because of the constancy of
temperature and chemical potentials), we are left finally with

d- a rr - f d = r IR. (4.42)

This equation in principle gives the curvature of the
(cylindrical) interface in terms of the orientational strain.

To proceed further, let us first note the fact that, for a
system with cylindrical symmetry, the strain energy density fd can
be written in the following form:

(4.43)
where the first term is the strain energy density corresponding to
the case of zero curvature, i.e. R-+oo, and the second and the
third are the terms proportional to 1/r and 1/r2, respectively,
and hence they vanish when R-+oo. In terms of the components of
the director in respect to the cylindrical coordinate, fo, f1, and
f2 are specifically given by

f 0 ( n, anI or) = ~ K 1 (an r) 2
2 or

+

(4.44)

1 onz 2
- nrl,. --]

'P or

1 (an ) 2 ( an ) 2+ - K3n 2[ _r + ~ +
2 r or or

onr
f 1 ( n, an I or) = K 1n r - +

or

2 ~+ K3[n n.,r 'P or (4.45)

and
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1
f2(n) = - K n 2 +

2 1 r

Note that fo corresponds to the deformation energy density
calculated as if the interface were planar. Similarly, according

dto Eq.(2.00), arr can be divided into two terms as

(4.47)

where in the present geometry, in particular, we have

ad =rro -2fo(n,on/or), (4.48)

ad =rr1 - f 1( n, 0n1or) . (4.49)

Then, by combining Eqs.(4.42), (4.43), and (4.47)-(4.49), we get

(4.50)

where fo and f2 are to be evaluated at r=R in the Gibbs' spirit;
that is, by extrapolating the bulk orientation of the director
to R. Equation (4.50) is the nematic version of the Laplace
equation.

By solving Eq.(4.49), the curvature 1/R is given by

1

R

2fo (4.51)=

It is here illustrative to expand the above expression in terms of
a (usually small) parameter E = (fof2)1/2/r to give

1
= (4.52)

R r

Then it follows immediately that, up to first order in E, the
curvature of the interface is given by

1/R = folr. (4.53)
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The parameter of expansion ~ has a rather clear physical meaning:
Let A be the characteristic length of orientational deformation,
over which the director changes its direction appreciably, and K
be a typical Frank constant; then, in view of Eqs.(4.44) and
(4.46), we can have an order of estimate of ~ as

~ ..•....KI (2r A) AIR. (4.54)

Therefore, we can conclude that the higher order corrections to
Eq.(4.53) will be important only when A gets so small that R
becomes comparable with A; note that R itself is of the order of
A2 and hence of ~-2.

To make the point more specific, let us take K=3x10-11 N,
r=30 mN/m, which are typical values for the elastic constant and
the surface tension of nematics, and assume that the deformation
is occurring typically over A=l ~m. Putting these values in
Eq.(4.54), we obtain ~=5x10-4 and R=2 mm. This shows that at a
free surface of nematics, Eq.(4.53) holds to a good approximation
for virtually all realistic cases. For an interface between
nematic and isotropic phases, however, which has commonly an
interfacial tension on the order of 10-2 mN/m, ~ becomes as large
as 0.5 (R 2 ~m) under the same condition as above, indicating
the need to retain the higher order terms. At a real nematic-
isotropic interface, however, a number of other factors influence
the shape of the interface [17,21-23], before the approximation in
question actually breaks down.

Finally a word of caution is in order as to the meaning of
the interfacial tension r, which has been used without explicit
definition in the above. We have started the present argument
with the condition of mechanical equilibrium of the interface,
conceiving that r is a tensile force acting at the point R. As
in the case of ordinary fluids, therefore, R is to specify the
position of the "surface of tension" for the nematic interface,
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when r is chosen to be compatible with the thermodynamics. It is
thus noteworthy that the mechanical formulas as Eqs.(4.50) and
(4.53) offer an essentially distinct perspective as regards the
interfacial tension, independent of the thermodynamics of the
interface to be discussed below.
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4.3 Orientational thermodynamic variables and thermodynamics
of bulk nematics

A thermodynamic treatment of a macroscopic body begins
invariably with counting out all the thermodynamic variables
needed to completely specify the state of the system in question.
One of the most fundamental assumptions of a traditional treatment
of fluid interfaces is that the equilibrium state of the interface
is attained automatically once the state of the bulk phases is
specified; so that the thermodynamic variables for the bounded
system are assumed to be completely identical with those for the
bulk phase. Based on this assumption, therefore, it is only
necessary to consider the thermodynamic variables relevant to bulk
nematics.

As described in the previous chapters, the nematic liquid
crystals have a long-range orientational order, yet still lacking
a translational periodicity. Consequently, the equilibrium state
of a nematic liquid is to depend not only on the temperature, the
volume of the container, and the number of molecules in it, but
also on the "orientational boundary condition" at the container
wall and on its "shape" as well through the curvature elasticity
of nematics. In its most general description, the orientational
state of a nematic may depend on the director and its derivatives
of all orders at the boundary. Here, we will base our argument on
the Frank theory of curvature elasticity, by restricting the
attention to the small deformation regime. Since the Frank
theory is a kind of linear elastic theory, the number of
orientational degrees of freedom will be greatly reduced, thereby
making the problem mathematically tractable. The purpose of this
section is to set out the most convenient set of thermodynamic
variables to specify the orientational equilibria of nematic
liquid crystals, and to discuss the thermodynamics of deformed
bulk nematics.
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4.3.1 The equilibrium configuration of the director in the bulk
nematic with cylindrical symmetry

As described in Chapter 2, the equilibrium director profile
should satisfy the Euler-Lagrange equation, which derives from the
Frank elastic energy functional. Based on this equation, we will
here work out some characteristic features of the director
profile, which the nematic in question is expected to have when it
is deformed with cylindrical symmetry. Since we are only
concerned with the bulk property, it is completely immaterial
whether or not the elastic energy density involves terms resulting
from the so-called "second order elasticity." Here, we conceive
deformation processes in which variables other than the director
is kept constant.

Suppose a region of bulk nematic as shown in Fig.4.6. Taking
the cylindrical coordinate system, the Frank elastic energy of the
region Fd can be written as

rwdr.
(4.55)

where fo, f1, and f2 are the functions of the components of the
director and their derivatives, defined in Eqs.(4.44)-(4.46).
Then the director profile in
equilibrium rcan be in
principle obtained under an
appropriate boundary condi-
tion by directly applying the
variational calculus to Fd.
In order to see the qualita-
tive features of those direc-
tor profiles, however, it is
far more convenient to work

FIG.4.6. Cylindrical region of the
bulk nematic.
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with a new variable t defined by
t = In r. (4.56)

Since fo, f1, and f2 are, respectively, second, first, and zero-th
order homogeneous functions of dn/dr, it is readily shown that Fd
can be rewritten in terms of t as

(4.57)

where fo(n,dn/dt), etc. are the functions defined by Eqs.(4.44)-
(4.46) in which dn/dr is merely replaced by dn/dt, so that, for
example, fo(n,dn/dt) = r2fo(n,dn/dr). The Euler-Lagrange
equation determining the equilibrium director profile now reads

d aLd
dt a (dniI dt)

(4.58)

where Ld = fo + f1 + f2, and the subscript i refers to either r,
~, or z, and h is the Lagrange multiplier to assure n2 = 1.

A. Director profile as a trajectory on a unit sphere
As noted by Thurston [24], a director profile, when it

changes only in one dimension, can be regarded as a trajectory of
a particle moving on a
unit sphere. Though
this analogy with a dy-
namical system adds
nothing essentially new
to the information con-
tained in Eqs.(4.57),
(4•58 ), etc ., it is ex-
tremely powerful to vis-
ualize the character-
istic features of the

r

-- --

FIG.4.7. Unit sphere
representation of an
equilibrium director
profile.
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profile and thus to classify various profiles according to their
global properties.

In this analogy, the director n corresponds to the position
of the particle, t to the time, and Ld to the Lagrangian. Accord-
ingly, the Euler-Lagrange equation, Eq.(4.58), turns into the
equation of motion for the particle. Let us now introduce a unit
sphere, as illustrated in Fig.4.7, on which the director is to be
plotted as a function of t. In the figure, Z-, r-, and ¢-axes
should be understood as expressing the same directions as in
Fig.4.6. Therefore, the point A, which is physically equivalent to
the radially opposite point A' because of the equivalence of n
and -n, corresponds to a director which is normal to the
cylindrical surface. The points on the equator, on the other hand,
express those directors which are tangential to the cylinder. For
the sake of later calculations, we will occasionally utilize the
spherical polar coordinate (e,~) as also defined in Fig.4.7.

At present, the Lagrangian Ld consists of three terms fo, f1,
and f2. And, if we restrict ourselves to a region of the nematic
not very far from the interface,
approximately write

i.e. r/R = 0(1), we can

dni dn.= r ~
dt dr

R = ~-1.. . (4.59)

Then, considering the definition of fo, f1, and f2, we readily
have

and

where K stands for a typical value of the Frank elastic constant.
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From the above, we obtain

C4.60)

Then, it follows that, for sufficiently small deformations and/or
small interface curvature, we can neglect fl and f2 terms in
comparison with fo in the Lagrangian; in other words, the director
profile can be treated, to lowest approximation, as though the
interface remain planar even when the nematic is deformed. It
must be emphasized that this result is nonetheless nontrivial,
but intimately related to the fact that the radius of the
interface R should diverge more rapidly than the characteristic
length of deformation A according as the deformation weakens.

In a dynamical system, there usually exist several
conservation laws resulting from the inherent space-time symmetry
of its Lagrangian. Now it is a straightforward task to see by way
of Eq.C4.44) that Ld, as approximated above, remains unchanged
under transformation of t and rotation of n about the r-axis.
So, the Hamiltonian H given by

H = L
oLd dni

i oCdni/dt) dt

2= r foCn,dn/dr),

Ld = focn,dn/dt)

(4.61)

and the r-component of the angular momentum,

C4.62)

n~
Z

) ,
dt

are both to be conserved along each allowed trajectory. This
property can be easily confirmed by a direct calculation, if Ld is
expressed in terms of e and CP:
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(4.63)

where
f(8) = (K1Sin28 + K3cos28)/K3,

g(8) = sin28(K2sin28 + K3cos28)/K3.
Because Mr is written as

(4.64)

(4.65)

in terms of those angles, it follows immediately from the Euler-
Lagrange equation for ~ coming from Eq.(4.63) that Mr is indeed
constant in equilibrium. It is also notable at this stage that,
while the Hamiltonian remains to be a constant of motion even when
f1 and f2 are included, (though it is no longer equal to Ld as
above), Mr can be strictly constant only when they are neglected.

The general solution of the equation of motion should contain
at present four arbitrary constants, corresponding to the initial
position and the velocity on the unit sphere. From the above
argument, it is now clear that two out of the four constants are

Furthermore, since the Lagrangian is, as we have
already seen, invariant with respect to arbitrary shift of time
and rotation about the r-axis, we are generally allowed to write
the equilibrium director configuration in the form,

(4.66)

in terms of a special solution ns of the Euler-Lagrange equation
with given H and Mr. Here, T(~o) denotes an operator to rotate
the director about the r-axis by an angle ~o.

In order to further simplify the above expression, it is
helpful to consider a scaling of t like

t ~ Kt. (4.67)
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Upon application in Eqs.(4.61) and (4.62), we readily see that H
and Mr transform as

and (4.68)

Consequently, by taking we can finally rewrite
Eq.(4.66) to give

n = T(~o)ns[H1/2(t_to),1,MrH-1/2]. (4.69)

This expression shows that trajectories having the same M H-1/2r
are isomorphic to each other by an appropriate rotation about the
r-axis, apart from the scaling and the translation of t.

As far as the geometrical features are concerned, we can
therefore
parameter

characterize any allowed trajectory
MrH-1/2. We will introduce here a

by a single
dimensionless

parameter f3 via

(4.70)

Then any equilibrium trajectory may be expressed in a simple form
as

n = T(~o)ns[Hl/2(t_to),f3]'
or in terms of r as

n = T(~o)ns[Hl/2ln(r/ro),{3].

(4.71a)

(4.71b)

In summary, an equilibrium director trajectory (profile) is
completely specified by four parameters {3, H, ro, and ~o. The
topology of the trajectory, however, is cast into {3 alone; H
tells how fast the director traces the trajectory, and ro and ~o
indicate where to start tracing on the unit sphere.

B. Geometrical properties of trajectories: the meaning of {3
In order to appreciate the physical significance of the

parameter f3 in some detail, we shall first quote some results
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concerning the trajectories from Thurston[24] without proof:
(1) Any meridian is a possible trajectory.

[Meridian is a great circle passing the north and the
south poles. Thus, along a meridian, ~=~o=const.
and hence P=O; no twist deformations exist.]

(2) The only trajectories through a pole (S=O or n) are
meridians.
[Only when P=O, the director can be strictly normal to
the surface of the cylinder, cf. Fig.4.6.]

(3) A trajectory cannot be tangent to a meridian.
[A twisting of the director about the r-axis, if any,
never change its sense. (d~/dt has a fixed sign for
a given Mr.)]

(4) The equator is a trajectory.
[The pure twist deformation with S=n/2 is always
possible, if boundary conditions allow.]

(5) There are no trajectories tangent to the equator.
[Along a trajectory on which dS/dt=O does not always hold,
dS/dt never be zero at S=O for any choice of p.]

These properties are schematically illustrated in Fig.4.8.

r

FIG.4.8. Basic geometrical
properties of an equilibrium
trajectorx. Trajectories
like (3) and (5) are not
allowed.
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In (1) and (3) of the above, we have learned that if and only if
~=O, it is possible for d~/dt to vanish, resulting in a director
profile in which the rotation of the director is confined within a
plane containing the r-axis. Therefore, in the presence of an
aligning interface, which is of course assumed to have the
cylindrical symmetry, it is naturally anticipated that such a
planar configuration of the bulk director should exclusively
excite the "out-of-plane" or "polar" mode of the orientational
anchorage, regardless of the choices of Hand roo So, the
director configurations with ~=O, or equivalently the meridians
are to play a special role (as a principal mode of bulk
deformation) in connection with the interfacial properties of
nematics.

From (4) and (S), on the other hand, we know that the
equator, in which B is fixed at n/2, is a possible trajectory as
far as the bulk equilibrium is concerned. This configuration may
become a truly allowed one, if the boundary condition is such
that the director is constrained to be perpendicular to the r-
axis. In this special event, in particular, it is expected as
regards the interfacial anchorage that the bulk deformation in
question will excite only the "in-plane" or "azimuthal" mode of
anchorage, in a similar manner as meridians do. As readily
verified from Eqs.(4.63)-(4.6S), ~ is in this case equal to
g(n/2). In contrast to meridians (~=O), however, the director
configurations with ~=g(n/2) do not cover all the principal
modes related to the in-plane anchorage;
takes care of pure planar alignments.

Hence it is natural and also necessary to ask at this stage

indeed, ~=g(n/2) only

whether or not there is a possible trajectory with constant B for
its arbitrary value other than n/2. Obviously, such a trajectory
with, say, Be' is to excite the in-plane mode of anchorage having
the easy axis with Be' Although the answer to this question is
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in general negative as will be shown below, there always exists a
trajectory [with t3=g(Se)] which is tangent to the above
hypothetical trajectory. So, it is indeed possible to excite the
in-plane mode alone by means of those special trajectories with
t3=g(Se).

In terms of t3 and ~=t(2H/K3)1/2, we can write Eq.(4.63) as

+ = 1. (4.72)
g( S)

which leads to an inequality

(4.73)

to be satisfied by 8's on a possible trajectory. At the point
where the equality of Eq.(4.73) holds (at 8t), Eq.(4.72) yields
d8/d~=O. But this does not necessarily mean that S=constant
along the trajectory. To see this point in detail, let us write
down the Euler-Lagrange equation for 8:

dS
+ f'(8)-

d~
_ ~ g' ( S Jd ~)2 = O.

2 1d~ (4.74)

This equation shows that only when g(8t)=t3 and g'(St)=O are
simultaneously satisfied, second and all higher order derivatives
vanish at this point and hence S=8t becomes an
trajectory.

In Fig.4.9, g(8) is plotted versus S for some values of

allowed

FIG.4.9. Function g(8) for
various values of K2/K3•e (deg)
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The allowed 9's are those beyond the horizontal line
representing s= (3. Then, unless 9 coincides with the extrema of
g(9), 9 cannot be constant along a trajectory. In general, how-
ever, at the point where gC9t)={3, d9/dt,: only changes its sign;
we call this a "turning pOint" after Thurston[241. At the turning
point, the trajectory is tangent to a small circle on the unit
sphere with a constant polar angle 9t, and as obvious from the
above argument, the converse is also true, here.

4.3.2 Thermodynamics of bulk nematics

A. Director as an independent variable
As we are assuming that the nematic under discussion is

always in contact with a large reservoir of undeformed nematic
with given concentrations, it becomes convenient to work with the
grand thermodynamic potential Q. For the nematic region shown in
Fig.4.6, held between the cylindrical surfaces at r=R1 and R2
subtending the azimuthal angle w with unit length in z-direction,
the cylindrical symmetry of the system allows us to write

(4.75)

where ~j (j=l-m) are the chemical potentials of the consituents.
At this stage, Q is still regarded as a functional of the
equilibrium director profile n(r), not as a function of {3, H,
to, and CPo. In view of the anisotropy of the nematic, the
variation of Q associated with an infinitesimall change of the
thermodynamic state may in general be written as

where represents the external work necessary to
infinitesimally change the director profile within the volume from
one equilibrium to another while keeping temperature, chemical
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potentials, and geometry fixed. Pl and P2 denote the stress
component normal to the boundary at r=Rl and R2, respectively.
n is defined ordinarily [cf. Eq.(4.4)] via

n=(aQ/aw)T/.l R R n
, j' l' 2' eq

We shall restrict the present argument to terms lowest-order
in £ as before, and approximate the Frank energy density by fo.
In order to formulate oWo' let us shortly consider those
processes which occur by way of the change of the director
profile alone. Under this circumstance, oWo has to be identical
with the change of the Frank energy Fd. As a consequence, by
applying the variational calculus to Eq.(4.57) (retaining only
fo), we obtain

oWo = dFd (4.77)

The first term in the above represents the orientational work
performed across the (cylindrical) boundary at R2, and the second
that across the boundary at Rl. External work through other
surfaces cancels out due to symmetry. Note that n(Rl) and n(R2)
can obviously be taken independently of each other (as far as the
bulk configuration is concerned) and are at the same time
sufficient to specify the equilibrium director configuration at
given environmental conditions (as they contain essentially "four"
independent parameters).
independent thermodynamic variables taking care of the director
configuration inside the nematic.

We shall postulate here that the expression of the
orientational work as given above can be extended as such to more
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general processes involving the change of temperature, pressure,
etc. So that, we may write

afo I+ wR dn , (R )2 a(dn./dr) 1 2
1 R2

(4.78)

where the subscript i runs over r, ¢, and z, and for descriptive
simplicity, we have employed Einstein's rule to imply summation
over j and i. It must be strictly born in mind concerning
Eq.(4.78) that dni(R1) and dni(R2) are the "net" differential of
the director at the boundaries located at RI and R2, respectively;
hence, they may change, even though n(r) is held constant, simply
as a result of the motion of the boundary. According to the
hydrostatics of nematics, therefore, we have to identify PI and P2
with the negative of the rr-component of the Ericksen stress
tensor. At RI for example, we see from Eqs.(2.00) and (4.47)-
(4.49) that up to lowest order in £

PI = -(J~r(RI)

RI-2H + P,- (4.79)

where P is the pressure of the nematic reservoir. In Eq.(4.79), fo
has been replaced by H on account of Eq.(4.61). Similarly,
given by

71 is

n = fR
Z

"~4> rdr
RI

- H In(R2IR1) - (R22-RI2)P/2.
(4.80)

Combination of Eqs.(4.78)-(4.80) leads to

4 - 37



where V = WCR22-R12)/2 denotes the volume of the nematic region.
The first three terms on the right hand side are formally the
terms common in the thermodynamics of ordinary fluids, though it
should be noted that the entropy S and the number of molecules Nj
may change as the nematic is orientationally deformed. The last
four terms are however concerned explicitly with the orientaional
deformations. Clearly they disappear when the nematic is free
from deformations, i.e. fo=O; in the undeformed state, therefore,
the thermodynamics of a nematic liquid is no different from that
of an isotropic fluid, being indifferent to the actual orientation
of the nematic director in space.

B. H as an independent variable
In Eq.C4.81), the directors at the boundary have been

untilized as thermodynamically independent variables to account
for the orientational state of the nematic. As already noted,
they are complete in the sense that they do have one-to-one
correspondence with the equilibrium director profile, and thus
should be complete thermodynamically as well. Here, we will
attempt to replace these boundary directors with the trajectory
parameters, H, {3, ro, and cflo, which are equally useful for the
specification of the equilibrium director profile. We show that
the thermodynamic potential involves H alone as an independent
variable, while others as external parameters, leading to a quite
simple formulation of the thermodynamics. Although the present
approach toward bulk thermodynamics may seem unnecessarily
complicated in the light of the rather trivial nature of the
results it finally produces, it must be emphasized that its
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conceptual clarity provides us with a systematic way to treat
interface problems in later sections.

We begin our argument with the identity

rdr, (4.82)

which directly follows from the spatial constancy of H in
equilibrium. In the above, the dependence of fo on T and #j

through the Frank elastic constants has been written explicitly.
Upon taking the total differential of Eq.(4.82), we readily obtain

ofo dT

(4.83)
where the symbol, (dni)R' denotes the infinitesimall change of ni
at fixed R; terms containing dR1 or dR2 cancel out on both sides.
From the definition, (dni)R can be related to dni(R) via

(4.84)

Substituting this equation into Eq.(4.83), we get

fR 2 ofo ofo( - dT + - d#. ) rdr -
Rl oT O#j J

ofo I+ R dn , (R )2 o(dn./dr) 1 2
1 R2

(4.85)
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where use has been made of the fact that fo is a second order
homogeneous function of dni/dr, cf. Eq.(4.44).
combination of Eq.(4.8S) with Eq.(4.81) yields

Finally, a

dQ = - [S + wfR2(afO\ rdrldT -
R aT)n
1

(4.86)

This equation is identical with Eq.(4.81) in its essential
content. But it is obviously far more transparent and useful.

To expound some fundamental consequences of this formula, let
us integrate the above with respect to w at fixed temperature,
chemical potential, R1, and R2• During this process, P is
apparently constant, so that we obtain

(4.87)

The second term is just the Frank elastic energy of the volume Fd,
and the first is the thermodynamic potential in the absence of
deformation Qo. Consequently, Eq.(4.87) reduces to

(4.88)

which is a trivial result coming from the definition of the Frank
elastic energy. However, since dQo = - SodT - Nojd#j - PdV,
with So and NOj being the entropy and the number of molecules in
the undeformed state, respectively, comparison of Eq.(4.88) with
Eq.(4.86) leads to

S = So - wfR2( afo\ rdr = So -
R aT)n
1

(4.89)

fR2 (afO)- rdr
Rl aKq n '

(4.90)
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which give the entropy and the number of molecules within the
orientationally deformed bulk nematic in terms of the temperature
and the chemical potential dependences of the Frank elastic
constants; the subscript q should be summed over 1, 2, and 3,
corresponding to the splay, twist, and bend elastic constants.
Though it is in general difficult to express the integral in a
closed form in terms of H, ~, ro, and ~o, we can draw some
qualitative conclusions from the above as follows:

(1) As the Frank elastic constants are usually decreasing
functions of temperature, the entropy should increase
when the nematic is isothermally deformed; note that the
integral in the right hand side is always positive.

(2)When deformed adiabatically, the temperature of the
nematic must be lowered.

(3)For a single component nematic, the density should be
reduced as the nematic is deformed isothermally; because
aKql all = (aKql ap) v-I, (>0 for most cases), with v
the molecular volume.

Especially, when the Frank constants satisfy

1 aK3 = : _a_K

K3 ax
(4.91)

K ax,

where X stands for T or Ilj' and K some appropriate function of T
and Ilj' Eqs.(4.88) and (4.89) assume an extremely simple form as

1 ax
S = So - - - wH

K aT '
(4.92)

wHo
all· J

(4.93)

Equation (4.91) is equivalent to require that the Frank elastic
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constants be always proportional to each other, thus it in
particular holds when the mean field prediction,
applies. Obviously, similar equations can also be derived, if the
director configuration is comprised of a single mode of
either splay, twist, or bend deformation.

From Eq.(4.93), we can see an interesting consequence for a
binary mixture. When the concentration of the solute c is so
small that the weak solution formulas such as Eqs.(4.24) and
(4.25) apply, we can rewrite Eq.(4.93) to give

and
c1

wH, wH,

where the first and the second components refer to the solvent and
the solute, respectively. So, if the solute is such that the
Frank elastic constant is reduced as it is added more to the
mixture, the solute is to accumulate in the deformed region, while
the solvent is to be depleted. This is in accord with
Le Chatelier's principle. More generally, in a multi-component
nematic, the concentrations are no longer homogeneous when the
director is distributed nonuniformly.
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4.4 Thermodynamic formulation of a nematic interface

In Section 4.3, we have learned that the orientational
thermodynamic state of a bulk nematic can be completely specified
(within the limit of the Frank theory) either by the directors
n (R1) and n (R2) or by H, f3, r s , and cPo. And, especially wi th
the use of the latter set of variables, we could achieve a compact
formulation of the thermodynamics of bulk nematics. Based on this
formulation, we shall here extend the Gibbs thermodynamics of
fluid surfaces to a nematic interface. In the first place, we
identify the orientational thermodynamic variables relevant to a
bounded nematic liquid, and in the second, we define the surface
excess quantity with respect to an arbitrary dividing surface in
the case of orientationally deformed nematics. Finally, we derive
the nematic version of the Gibbs equation.

4.4.1 Orientational degrees of freedom of a bounded nematic

Let us consider again a region as shown in Fig.4.5
circumventing the interface of the nematic with another isotropic
phase. Just as in the same manner as for bulk nematics, we can
write the change of the thermodynamic potential Q due to an
infinitesimal change of the thermodynamic state as

(4.94)
Contrary to Eq.(4.76), however, since only Ra is in the nematic
medium, we have to discard now the first term in Eq.(4.77) to give

oWo = - wR a (4.95)

In the above equation, it is of course assumed that Ra is well
inside the bulk nematic, so that the concept of the director and
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the Frank theory hold to a good approximation at the boundary of
the volume in question.

In the presence of an interface, it is no longer a trivial
matter to affirm whether n(Ra) can be taken independent of other
variables such as T, 11 j' etc., or not. In order to investi gate
this point in detail, let us generally write the director
configurations in equilibrium above the interface L as follows:

(4.96)

where X is a vectorial parameter characterizing the allowed
profiles which are at present supposed to be generated by the
action of a counter boundary placed outside the region under
discussion. The number of the orientational degrees of freedom of
such a bounded nematic is given by the dimension of X. It must be
noted at this stage that due to the Frank theory, the dimension of
X can never exceed four.

In order to determine the dimension of X, it is convenient to
consider a region of the nematic as shown in Fig.4.l0 confined in
between a couple of concentric interfaces (Ll and L2) which are
separated by a large dis-
tance. The starting point of
our present argument is the
trivial conviction that,
irrespective of the nature of
those interfaces, there must
be an equilibrium configura-
tion of the director,
neq(r:T, 11 j)' corresponding
to the free energy minimum at
the temperature T and the
chemical potential Ilj' which
is unique except for some
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special cases in which the multiple ground states exist.
As the equilibrium configuration must be compatible with both

interfaces at Rl and R2, there must be some appropriate vectors Xl
and X2 satisfying

n eq (r :T, I-L j) = n L 1(r: T, I-L j ,Xl)

= nL 2 ( r :T, I-L j ,X2) •
(4.97)

Since nL's themselves are the solutions of the Euler-Lagrange
equation, Eq.(4.58), it is shown to be the necessary and
sufficient condition for n Land n L to be identical for all

1 2
r, as in Eq.(4.97), that they coincide at two arbitrary points.
Therefore, Eq.(4.97) essentially reduces to four independent
equations involving two unknowns Xl and X2. In order that those
equations can be uniquely solved for Xl and X2 at any T and I-Lj'

thereby giving rise to a unique director profile, the condition

(4.98)

should be met, where Dim(X) denotes the dimension of the vector X.
Furthermore, because the choice of Ll and L2 is arbitrary, we
must have

(4.99)

which easily follows by applying ~~gy~tiQ ~g ~~~y~gym to
Eq.(4.98). This indicates that the number of the orientational
degrees of freedom is two in the case of a nematic liquid bounded
on one of its side by an interface [see "Note" at the end of this
section] .

As appreciable from the course of derivation, this is a kind
of phase rule (pertaining to the orientational state of a bounded
nematic) analogous to the Gibbs phase rule. As a consequence of
Eq.(4.99), in particular, we are allowed to regard n(Ra)
appearing in Eq.(4.95) as an independent thermodynamic variable.

4 - 45



So that we can write the equilibrium director profile in the
presence of an interface L in the form,

(4.100)

In terms of the traj ectory parameters H, f3, ro, and <I> 0, on
the other hand, it is readily shown by solving Eqs.(4.61) and
(4.70) for X along with Eq.(4.96) that we can alternatively write

(4.101a)

except for the following two cases: 1) H is always zero (so that
the trajectory shrinks to a point on the unit sphere), and/or
2) Eq.(4.70) becomes an identity with a constant f3.

In the former case, the nematic director is free to rotate as
in an infinite sample, and hence the boundary condition imposed by
the interface is fully degenerate, which is a situation of no
interest to us here. As regards the latter case, it can
immediately be shown that it occurs, even if possible, only at
f3=0: This is because, for f3~0, there is a turning point (of the
trajectory on the unit sphere) with non-zero polar angle 8 t
satisfying (3=g(8t) [Section 4.3.1], so that, when n(Ra) which
has 8<8t is assumed in Eq.(4.100), f3 corresponding to n(Ra)
should be smaller than the original one. Consequently, we see
that fQr ~Y~h ~ ~y~t~m Khi~h ~llQK~ Qnly m~rigi~n~ ~~ it~
~gYiliQriYmtr~i~~tQ~i~~, f3 can be a constant independent of X.
Since meridians are differentiated from each other by the
azimuthal angle <I> of the directors on it, it is possible to use
<I> as an independent variable in place of f3:

(4.101b)

The fact that the allowed trajectories are always meridians
is equivalent to that the system in question does not stand a
finite torque around the interface normal (r-axis). Such a
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situation may arise if there is a cylindrical symmetry about the
r-axis, and hence the orientational boundary condition due to the
interface should be conical with respect to the rotation about the
r-axis. Further, as we have seen in Section 4.3.2, the
thermodynamic state of a bulk nematic is independent of ~.
Therefore, in those cases to which Eq.(4.101b) applies, the states
differing only in ~ are thermodynamically equivalent. So,
insofar as thermodynamics is concerned, we can treat Eq.(4.101b)
as a special case of Eq.(4.101a) in which P=O.

Note:
In determining the number of the orientational degrees of
freedom for a bounded system, the Frank theory has played a
decisive role. Indeed, the resultant number of "two" is
just the half of the number of the degrees of freedom of a
bulk nematic. This in turn shows that two out of the four
orientational degrees of freedom of a bulk nematic should
give way to an interface, when the nematic is put into
contact with another phase. This does not, however, mean
that the property of a nematic interface can be fully
characterized by a couple of parameters. Rather, it simply
refers to the effect of an interface on the bulk orienta-
tion of the nematic director. Macroscopic description of
an interface makes sense only when it is properly suppleme-
nted by that of the bulk phase, as illustrated in the
following example: If we base our argument on an elasticity
theory which incorporates the up to, say m-th (m)l), order
derivatives of the director, we can show in the same way as
in the text that the number of the orientational degrees of
freedom of a bulk nematic becomes in general 4m ()4), and
accordingly 2m ()2) degrees of freedom of the bulk are to
be assigned to an interface!
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4.4.2 Definition of the surface excess

Now it is a straightforward task to define the surface excess
quantity for a nematic liquid crystal as an extension of the cases
of ordinary fluids described in Section 4.1. However, special
care must be exercised in the case of a nematic, in that neither
the concentration nor the entropy density is in general uniform
even in the bulk phase, when it is orientationally deformed (see
Section 4.3.2). In stead of Eq.(4.3), therefore, we need here to
define the surface excess of an extensive property X in a slightly
different form:

(4.3' )

where Xa and Xb are, respectively, the hypothetical X's which the
a and b phases would have, when each of the bulk phases were
"extrapolated" up to the dividing surface. This is evidently a
generalization of the original definition, because, if the bulk
phases are uniform,
and thereby

Xa and Xb may be given respectively by
reducing Eq.(4.3') to Eq.(4.3).

extrapolation should be done in such a way as to conserve the
state of the bulk phase, specified by the independent
thermodynamic variables, say T, I1j' H, and f3. At present, this
procedure simply corresponds to the analytical continuation of the
bulk director profile, following the Euler-Lagrange equation.

By using Eq.(4.85) in combination with Eqs.(4.94) and (4.95),
we obtain

(4.102)
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In this expression of the thermodynamic potential, R2 is still an
arbitrary parameter. Hence, the right-hand side of Eq.(4.102)
must be, as a whole, independent of R2. This property can be
readily confirmed by expressing dni(R2) in terms of dH, d~, etc.
In view of Eq.(4.101), we can generally write

dn, an.= =.!dr + ...:=...i..dT
dr aT

(4.103)
In conformity with the previous notation, we shall continue to
use dni/dr in the sense of
there is no fear of confusion.

(ani/ar)T,J.L.,H,~, as long as
JSubstituting the above into the

last term of Eq.(4.102), there arise five terms, the first of
which, involving dR2, is obviously -WHd[lnR22]. Next let us
consider the term containing dH. Based on the Euler-Lagrange
equation for ni, we can readily show that

d
r -[r

dr

Thus, by integrating with respect to r, we obtain

dH = - W[ln(R2/Rc)]dH,
(4.104)

where Rc is the constant of integration which is itself a function
of T, J.Lj' H, and ~. As we shall see later, the orientational
property of a nematic interface is wholly cast into the function
Rc'

To proceed further, let us consider a special surface
located, say, at Rex' across which no orientational work is
performed as the nematic is distorted at fixed T, J.Lj' and ~.
Though it is not always the case, it may be illustrative to
mention that the above condition is always fulfilled, if the
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director is "rigidly" pinned on the surface at Rex' So, in the
same spirit as de Gennes [15] introduced the concept of the
extrapolation length, it seems natural to entitle Rex the "point
of extrapolation" and the surface at Rex the "surface of
extrapolation." As shown in Eq.(4.9S), the orientational work
done through the surface at Rex when H is changed by dH is given
by

o = 0' W0 = - wRex

As Rex is a function of H, the above equation can be rewritten as

which is, on account of Eq.(4.104), further simplified to give

(4.105)

Therefore, once Rex is given as a function of T, Jlj' H, and (3,
we can find Rc via Eq.(4.10S), and vice versa. Using Eq.(4.10S),
we can rewrite Eq.(4.104) as

I dH =
R2

(4.106)

Next, the term involving d{3 is immediately obtained in a
similar manner as we have done for Eq.(4.104):

= - w G(T,Jlj,H,{3)d{3,
(4.107)

where G(T,Jlj,H,{3) is a function independent of R2. Finally, the
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terms with dT and d~j are evaluated directly from Eq.(4.83) to
give

ani I dT =
aT R

2 (4.108)

fR2 afo
W (- dT)rdr

R aTex

an. I-=..:.:.1 dT,
aT Rex

and the equation in which T is replaced by ~j in the above.
Then, the use of Eqs.(4.104)-(4.108) in Eq.(4.102) yields

dO fRex afo afo ~I= - [S + W (--)rdr + WRex ] dT
R aT a(dni/dr) aT Ra ex

fRex afo afo an.
t ] d~ j[Nj + W (--)rdr + WRex ..=..:.:.L

R a~· a(dni/dt) a~ja J Rex

(4.109)
As required, Eq.(4.109) is independent of R2, and serves as the
fundamental equation for the thermodynamic description of a
bounded nematic, which plays the same role as that Eq.(4.4) does
for ordinary fluids.

Now we can follow much the same procedure as that we taken
from Eq.(4.4) through Eq.(4.14) to define various surface excess
quantities for the nematic interface. As H and ~ are both
intensive variables, an integration of Eq.(4.107) with respect to
W at constant T, ~j' Ra' Rb, H, and ~ leads to

o = 1/W,

which is the same as Eqs.(4.5) and (4.10).
(4.110)

Let us now take the
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dividing surface at R,
Va = W(R2-Ra2)/2, Vb =
equation corresponding

and rewrite Eq.(4.109) in terms of
W(Rb2-R2)/2, and A = W R, to obtain an
to Eq.(4.6) for ordinary fluid systems:

dO = - [S fRex afo ofo
~~! IR+ W (-)rdr + WRex ] dT

R oT o(dni/dr)
a exfRex afo ofo oni I- [N. + W (--)rdr + WRex ]du jJ R ott . o(dni/dt) ottja J Rex

- PdVa - PbdVb + d{H[ln(R/Ra)]W} + rdA + Al;dR
1 olnRex-1+ AR- [In(RexIR) + 2 olnH ]dH - AR G(T,ttj,H,{3)d{3,

(4.111)
where use has been made of P =P+HR -2 with P being the pressurea a'
in the nematic reservoir. The interfacial tension r is defined
ordinarily by

r = [0 - 0a - 0b1/A

= {7I W + PVa - H [1n(R IR a)]W + PbVb} I A,
and t; by

l; = (P - Pb) - r I R - HI R2 = 0 r I oR.

(4.112)

(4.113)

Then, by substituting Eq.(4.112) into Eq.(4.111) and making
use of the Gibbs-Duhem equation for bulk phases, we obtain

rex ofo Rex ofo on.,dr = - [SS + R-1 rdr + _1 1 dT
R oT R o(dni/dr) oT Rex

rex ofo Rex ofo oni I ldttj- [r. + R-1 - rdr +
J ottj R o(dni/dr) ott·R J Rex

-1 -2 1 olnRex+ (P - Pb - rR - HR )dR + R- [In(RexIR) + 2 ldH
olnH

(4.114)

4 - 52



where SS and rj are, respectively, the surface entropy and the
adsorption of the j-th species per unit area of the dividing
surface taken at R. As it stands, this is the extension of the
Gibbs equation to interfaces of nematic liquid crystals, and gives
the basis for their thermodynamic treatment. Besides the ordinary
terms found in the original Gibbs equation [i.e., Eq.(4.14)], we
see several additional contributions coming from the orientational
anisotropy of the nematic. In what follows, we will study the
effects of these factors in detail.

4.4.3 Hard wall-nematic interface
Before going into the detailed discussion of the various

aspects of the genera-
lized Gibbs equation, we

interfaced against a

nematic

T'11
x

would like to here
derive the Gibbs equa-
tion when the nematic is

Fig.4.11)' Here, we
hard wall

planar hard wall (see

mean by "hard wall" an
athermal substrate which
serves merely as a cons-
tant boundary field
acting on the nematic
[25]. Studying this
idealized case is of
much realistic impor-

FIG.4.11. Planar interface between
a hard wall and a deformed nematic.
The origin of the x-axis is fixed
with respect to the hard wall.

tance, however, since it
can be expected to well approximate the behavior of the nematic in
a real solid sUbstrate-nematic system, which is in extensive use
for alignment control of nematic samples. Because the planar
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geometry of the interface is presently an auxiliary condition
which must be satisfied regardless of the state of the nematic
phase, we are to find some characteristic differences in its
thermodynamics, as shown in later sections, in comparison with the
case of a fluid-nematic interface which is assuming a near-planar
geometry under an infinitesimally small orientational deformation.

The Gibbs equation for the hard wall-nematic interface can be
at present most easily obtained by formally taking the planar
limit of Eq.C4.114), while neglecting the contribution from the
substrate phase. In order to actually perform this procedure, we
have to recall the fact that, as R...•OO, the variable His to in
general diverge, because, from its definition, we have

H = R2 f0 Cn ,dn I dR) .

Then, upon taking the interface normal pointing toward the wall as
the x-axis as shown in Fig.4.11, we get

lim H/R2 = lim focn,dn/dR) = fdcn,dn/dx),R••.•oo R••.•oo
(4.115)

where fd denotes the unapproximated Frank strain energy density
[see Eq.C4.43)]. Furthermore, since

dfd/dx = lim dCH/R2)/dR = lim[-2fo/R] = 0,R...•oo R...•oo

fd converges to a constant independent of x as the interface gets
planar; hence, fd can be used as a thermodynamic variable in place
of H. The variable ~, on the other hand, is obviously unaffected
by this limiting procedure. Consequently, in view of Eq.C4.107),
we can define a new function Gp in such a way that

(4.116)

We shall here denote the positions of the dividing surface
and that of the surface of extrapolation as X and Xex'
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respectively. Using Eq.(4.116) and replacing dR and dRex by dX
and dXex in Eq.(4.114) while making R and Rex go to infinity and
neglecting the contribution from the substrate phase, we obtain

dr* = - [Ss+ fXex afd afd
~~! IX ] dT( - )dx +

X aT a(dni/dx)
ex

- [['. + f:ex( ~ )dx + afd ani I ]dJLjJ aJLj a(dni/dX) aJLj Xex

where the tension of the hard wall-nematic interface has been
*denoted as r. It is not difficult to confirm that this equation

is identical with that we obtain by starting directly from
Eq. (4.94).

Finally, a word of comment is in order as to the relationship
between the hard wall-nematic interface with which we have
concerned ourselves here and a real solid-nematic interface. It
is crucial at present to notice that most of the solid substances
(like glass) which are in use as a substrate of nematic samples
are in effect perfectly rigid when compared with the curvature
elasticity of the nematic liquid; so that, we can, to a good
approximation, neglect a change of the thermodynamic state of the
solid itself which would occur in response to the variation of the
orientational state of the nematic. It must furthermore be
pointed out here that the aligning surface layers such as
polymeric films etc. may be treated simply as an adsorbed layer
from a thermodynamic point of view.

Based on the assumption of infinitely rigid solid, we can
generally divide the thermodynamic potential Qt of the whole
system including both solid and nematic phases as [25],
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(4.118)

where 0sol is the thermodynamic potential of the solid when it
exists alone in vacuum; we assume here the solid has a vanishing
vapor pressure and is also immiscible to the nematic phase. And,
as clear from the above, Q)I(takes care of the remainder of Q t
after the individual contribution of the solid is subtracted.
According to the statistical mechanics of the rigid solid-fluid
interface (see Chapter 5), it is shown that Q)I(can be identified
with the thermodynamic potential of the nematic phase which is in
equilibrium under the external field produced by the solid phase.
Consequently, we have to relate the interface tension r in
Eq.(4.117) with Q)I(as follows:

(4.119)

where Qa is, same as that in Eq.(4.112), the thermodynamic
potential of the hypothetical bulk nematic when the dividing
surface is taken at x. The interfacial tension defined this way
is usually referred to as the "boundary tension" [26-28]; hence,
in order to discriminate it from the interfacial tension in the
usual sense, we denote the boundary tension as )I(

r . Comparing
Eqs.(4.119) and (4.118) with Eq.(4.112), we can write

(4.120)

Then, )I(rand r coincide with each other, only when the dividing
surface is taken in such a way that Qb = Qsol.
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4.5 The surface of tension and the surface of extrapolation

As we have seen in Section 4.1.4, the surface of tension can
be regarded as a specially chosen dividing surface for which
the thermodynamic and the mechanical concepts of interfacial
tension become compatible. In this section, we shall investigate
how the physical meaning of the surface of tension may be modified
in the case of a nematic interface and how it is related to the
orientational property of the interface.

4.5.1 Some elementary properties of the surface of tension
When the (mechanical) interfacial tension is given by rs'

while the elastic strain energy density stored in the nematic is
(to lowest order) fo at the point of the interface, it has been
shown in Section 4.2 that the radius of curvature of the
(cylindrical) interface Rs can be written as

(4.53' )

provided the (undeformed) nematic reservoir and the fluid in
contact with the deformable nematic are held at a
hydrostatic pressure P.

common

FIG.4.l2. Equilibrium shape of a
deformed nematic-fluid interface.
The interface is planar in the
absence of deformation, but as
it is orientationally deformed
under a fixed external pressure.
the interface tends to curve to
seak a mechanical equilibrium.

P
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Noting the relation H = Rs2fo, we can now rewrite Eq.(4.53')
to give

Rs = HI r s . (4.121)

Equations (4.53) and (4.53') have been derived via a mechanical
argument, hence they are meaningful only when the surface of
tension is taken at the dividing surface. It must be noticed in
particular that Eq.(4.121) indicates that H should diverge to
infinity as the interface tends to be planar (Rs-+OO), in contrast
to the fact that fo goes to zero. This might at a glance appear
unphysical, in that H is proportional to the deformation energy
density and that the interface be planar when the nematic is
undeformed. Here, however, we must recall that, only when
observed at a fixed point relative to the cylindrical coordinate,
H can be proportional to the deformation energy; and in
Eq.(4.121), indeed, H should be measured just at the position of
the interface which moves outward as the elastic deformation near
the interface weakens. So, the fact that H-+oo as fo-+O is
nothing but an indication that the radius of the interface Rs
increases overwhelmingly in comparison with the decrease in fo.

The thermodynamic interfacial tension r with respect to an
arbitrary
Eq .(4 .112) .

dividing surface at R is generally defined by
Then, by combining Eqs.(4.112) and (4.121), while

setting Pb=P as required here, we can now express r in terms of
rs' Rs' and R:

which is an equation corresponding to Eq.(4.34) derived for
ordinary fluids. In particular, if I (Rs-R)/Rs I «1, i.e., the
dividing surface is sufficiently near the surface of tension, then
we can expand the logarithm to obtain
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R 2
r = r s J2 (4.122 )

R

This result shows that at constant T, Ilj' H, and {J, the tension
of a nematic interface does not exhibit an extremum as a function
of R, as the interfacial tension of ordinary fluids does. This is
a manifestation of the fact that at constant Hand {J,

orientational as well as translational work must be performed
across the dividing surface so as to shift its location. As
obvious from the physical meaning of the surface of tension, it
only takes care of the equilibrium with respect to normal stress
at the interface.

Indeed, by regarding the "director at the dividing surface"
as an independent thermodynamic variable in place of Hand {J [see
Section 4.4.1], it is easy to show, on account of the definition
of the interfacial tension, that Eq.(4.114) should be written as

dr s -1-2= - S dT - r. d11· - t r R - HR )dR -
J J

afo I dn , (R).
aCdni/dr) R 1

C4.123)
This expression shows clearly that, for fixed T, Ilj' and n(R),
the interfacial tension takes a minimum value at R=Rs' in much the
same manner as in ordinary fluids.

In the generalized Gibbs equation, there have appeared a
couple of surface orientational functions, Rex and G(T,llj,H,{J),
the former of which gives the position of the surface of
extrapolation. Thermodynamically, the latter can be shown to be
connected with the surface of tension as:

C4.124)

which immediately follows from the generalized Gibbs equation by
substituting Eq.(4.121) at fixed T, Ilj' and H with the surface of

4 - 59



tension adopted as the dividing surface. This may be enough to
reveal the important role played by the surface of tension as to
the orientational properties of nematic interfaces.

4.5.2 Curvature dependence of the interfacial tension

In order to determine rs as a function of H, let us consider
Eq.(4.114) at constant T, /J.j' and {3 (with Pb=P):

1 1 1 (3lnRexdr = - (r + R- H)R- dR + R- [In(RexIR) + 2 ]dH.
(3lnH (4.125)

Substituting rs (=H/Rs) and Rs for rand R in the above, we find

= (4.126)

Thus, it is seen that when the surface of tension and the surface
of extrapolation coinci de wi th each other (1.e. Rs=Rex) , r s
should always be a constant independent of Hand {3:

where ro denotes, as before, the interfacial tension when the
interface is planar (in the absence of orientational
deformations).

When Rs~Rex' however, rs is no longer in general a constant
and is to change as the curvature of the interface increases in
response to the orientational deformations in the nematic. To look
more into this point, we rewrite Eq.(4.126) as

= (4.126')

Because r s converges to r 0 as H-+OO, the right-hand side of the
above equation has to be integrable over 0 <Hi 00. Hence, we see
that, at large H, the right-hand side must decrease at least
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faster than H-1. This fact then assures that

as H-+oo. (4.127)
So that,

(4.128)

Based on Eq.(4.121), we have

Rex - HI r 0, at large H. (4.129)

Then, by-part integration of Eq.(4.126') yields

rs
2

~= r 0 R 2
s

(4.130)

When the deformation is weak, in particular, Eq.(4.130) can be
approximated as

rs (4.131)

where we have used H r 02 Ifo as obtained from Eqs. (4.53') and
(4.121), and
Eq.(4.128).

expanded In(RexIRs) as (Rex-Rs)/Rs on account
combination with Eq.(4.123), we obtain

of

r = r 0

Finally, in
2Rex

R2 (4.132)

A. Normal behavior: 1im (Rex - Rs) < 00fo-+O
Equations (4.128) and (4.129) do not necessarily imply that

the separation between Rs and Rex should always remain finite as
the
that

orientational deformation disappear; but, they only demand
-1(Rex-Rs) = o(fo). However, as we will see in the next

section, it is possible to show that Rex-Rs is just the
orientational extrapolation length, hence if (R -R )-+00ex s
according as fo-+O, it must be concluded in the Rapini-Papoular's
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sense that the anchoring strength at the interface is infinitely
weak. Based on this observation, we shall call it a "normal
behavior," if Rex-Rs converges to a finite value, and if not, a
"singular behavior."

Although Eqs.(4.131) and (4.132) are valid for both normal
and singular behaviors alike, they can be reduced to a

particularly simple form in the case of a normal behavior, which
is readily comparable with the results for ordinary fluid
interfaces. As in the case of ordinary fluids, let us now write

o 00 = Iim (Rex - Rs).R~oo (4.133)

Then, in view of Rs ro/fo which is valid for small fo's, we can
transform Eq.(4.131), up to first order in fo, as

or
(4.134a)

(4.134b)

Note that, apart from the sign of the exponent, Eq.(4.134b) has an
identical form with that derived for an ordinary fluid interface
[see Eqs.(4.3S) and (4.39)]. This equation indicates that rs
remains virtually constant as long as Rs is large in comparison
with 000• As will be shown later, 000 gives a measure of the
orientational anchoring strength at the interface: the larger 000
becomes, the weaker the anchoring. Thus, Eq.(4.134b)
additionally shows that the interfacial tension at a nematic
interface is more likely to be affected by the orientational
deformation when the anchoring gets weaker and/or the interfacial
tension smaller.

The value of the interfacial tension when the dividing
surface is taken at Rex can be approximately evaluated from
Eq. (4 .132) :

4 - 62



(4.135)

The surface of extrapolation has been defined as a hypothetical
surface through which the orientational work done by the
environment would vanish when the nematic were extrapolated to it.
Since a finite orientational work through a dividing surface
implies a change of the interfacial tension, we can redefine the
surface of extrapolation as a dividing surface with which the
orientational work does not contribute to the change of the
interfacial tension. On the other hand, the surface of tension
designates, as clear from its definition, a special dividing
surface where the work associated with the Ericksen stress does
not alter the value of the interfacial tension. As a result, if
both of these surfaces are identical, neither director rotation
nor Ericksen stress are to change the interfacial tension, so that
it remains constant even when the nematic is orientationally
deformed to a varying degree.
in connection with Eq.(4.125).

It is generally impossible,

We have already noticed this point

however, to simultaneously
eliminate both of the
contributions from

------- ._- -

;::.... Ya
c
0
en 1:,c PmQ)-
c
c..> Y.x
c-"-Q)-c

director rotation and
from the Ericksen stress
only by
choosing
surface.

appropriately
the dividing
Indeed, with

the dividing surface
taken at the
director rotation will curvature 1/Rs
change the interfacial
tension, and at Rex' the
Ericksen stress will do
the same thing.

FIG.4.13. Variations of interfacial
tension with the increase in the
interface curvature.Equa-
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tions (4.134a) and (4.135) show that they are, roughly speaking,
same in magnitude while opposite in sign as shown in Fig.4.13. At
the present level of approximation, the interfacial tension is
linearly dependent on the position of the dividing surface, hence
we can conclude that by taking the dividing surface at

(4.136)

the interfacial tension is given by the geometrical mean of those
at Rs and at Rex' which is fixed at ro up to first order in fo as
a result of cancellation between the rotational and the
translational works across this dividing surface.

4.5.3 Thermodynamic potential

In order to further appreciate the physical significance of
the surface of tension and the surface of extrapolation, it is
also instructive to see how the thermodynamic potential itself
changes under weak orientational deformations. As the
thermodynamic potential is independent of the choice of the
dividing surface, we may locate it at Rs' By using Eqs.(4.112)
and (4.134b) along with the assumption of normal behavior, we get

(4.137)

in which As=WRs designates the area of the dividing surface.
Since the total deformation energy Fd stored in the hypothetical
bulk region between Rex and Ra with the area A can be written as

as long as the deformation is weak, Eq.(4.137) shows that the
contribution from the orientational deformation can be treated as
if the nematic were extended up to Rex with its bulk properties
completely retained. In this respect, the term, "surface of
extrapolation," appears to be a reasonable nomenclature.
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Concerning Eq.(4.137), however, it must be remembered that
the area of the interface A refers to the surface of tension. If
the area is measured at a different point, thereby resulting in a
numerically different value, it becomes no longer possible to make
such a simple interpretation of the orientational part of the
thermodynamic potential as denoting the deformation energy for a
hypothetical volume of the

As mentioned above,
the change of an inter-
facial tension is in
general comprised of
translational and orien-
tational parts, and for
example,
disappears
dividing

the former
when

surface
the
is

nematic.

FIG.4.14. Surface of tension
as an effective interface
demarkating deformed "bulk"
nematic from bulk fluid.

taken at Rs. Thus, SO

= 0 +PV-A r 0 turns out
to be solely orienta-
tional, if A is taken at the surface of tension. By virtue of
this property, the particular expression of the thermodynamic
potential as given by Eq.(4.137) is consistent with a naive pic-
ture of the system as shown in Fig.4.14, which can be regarded as
an extension of the Rapini-Papoular model [29] to a curved inter-
face; namely, the nematic and the isotropic fluid are separated by
an infinitely thin membrane which is sustaining a tension ro, and
both phases in contact are completely bulklike right up to the
membrane, except that the nematic director is subjected to some
local boundary condition at the membrane. Insofar as we are
concerned with the orientational property of the interface, this
suggests that it is most natural to regard the surface of tension
as a virtual position of the nematic-fluid interface.
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4.5.4 The surface of extrapolation at a hard wall-nematic
interface

Before closing this section, we shall list some properties
of the surface of extrapolation at a hard wall-nematic interface
so as to facilitate comparison with and further elaboration of the
relevant formulas for the nematic-fluid interface.

Integrating Eq.(4.117) with respect to fd at fixed T, ~j'
P, and X, we readily find

)I( )I( fr = r + Xo ex
o

OXex- X + 2fd-- dfd.
ofd

(4.138)

In the case of a rigid solid-nematic interface,
)I(r by the interfacial tension r to give

we can replace

r = r 0 + f X -ex
o

OXexX + 2fd-- dfd.
ofd

(4.139)

Especially, in case Xex remains finite at fd=O (normal behavior),
we can obtain to first order in fd the following equations:

r = r 0 + ( Xex - X) f d (4.140)
and hence

Q = - PV + A [ (X ex - Xa ) f d] + A r 0 • (4.141)

identical
Eqs.(4.140) and (4.141)

form with Eqs.(4.134b)
have, respectively, anNote that

and (4.137), provided the
position of the dividing surface X is understood to be referring
to the surface of tension; the arbitrariness in the choice of X
appearing in the above equations is a consequence of the fact
that, when the interface is planar, the concept of the surface of
tension loses its meaning whatever the nature of the interface.
Conversely, it may also be argued that they show that the
thermodynamics of a curved nematic interface can be treated as if
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it were planar, in a very limited sense though, when the dividing
surface is taken at the surface of tension.
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4.6 Geometrical properties of the point of extrapolation and the
Connection with the Rapini-Papoular formalism

In this section, we shall focus our attention on
investigating the relation between the surface-thermodynamic.
orientational parameters, Rex and G(T'#j,H,P), introduced in the
former section, and the conventional phenomenological parameters
appearing in the Rapini-Papoular formalism [29] of the surface-
induced alignment. This enables us to apply the present
thermodynamic theory to existing experimental results, which have
mostly been formulated and analyzed on the basis of the Rapini-
Papoular type formalism. Although the present consideration is
mainly concerned with the case of a nematic-fluid curved
interface, the argument applies to the solid-nematic case without
change, when the planar limit is formally carried out.

4.6.1 Equilibrium director profile as a function of Rex and G

A. General formulas
According to Eq.(4.71b), the equilibrium director profile is

generally written in the form

(4.71b)

where ~=(2H/K3)1/2ln(r/ro), and T(~o) represents a rotation
matrix acting on the (r,¢,z) components of the director:

(
~

1

T(~o) =

o
(4.142)cos~o

sin~o

Because Eq.(4.71b) involves only two arbitrary constants ~o and
ro besides Hand P, it should be in principle possible to express
them as functions of Rex and G.

Let us denote the director in the absence of deformation as
ne (the unit vector along the easy axis). So that, as the

4 - 68



deformation weakens
fol/2(r-ro)-+O, the

near the interface,
director profile has to shrink to the single

point n e' Here, we will consider only such profiles that
converge continuously to n e as fo-+O wi th a fixed {3; then, we
find from Eq.(4.71b)

lim T(q,o)ns[';,{3] = T[q,(O)]ns[O,{3] = ne'
';-+00

Since the origin of q,o is arbitrary, we can assume without loss

(4.143)

of generality that
ns[O, {3] = ne' (4.144)

In order that there exists such ns that passes through ne, it is
necessary and sufficient that {3 be chosen to satisfy the
following inequality [cf. Eq.(4.73)]:

(4.145)

where ge denotes the polar angle of ne' This condition is not
to deny the existence of equilibrium profiles with {3>g(ge); but,
as Eq.(4.143) shows, such trajectories must cease to be a
equilibrium director profile at a sufficiently small, yet nonzero
deformation. Conse-
quently, the region on
the (fo, {3) plane, cor-
responding to equilib- ~
rium director configura-
tions, may be expressed
as something like the
shaded area depicted in
Fig.4.15.
region
{3=g(1[/2)

Within the
in between

the
[where

and
shaded region,
Eq.(4.144) does not of

strength of deformation fo

FIG.4.15. Region of fo and B corres-
ponding to an allowed state of a
bounded nematic.
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course hold], we cannot find a set of ro and ~o which is com-
patible with the boundary condition imposed by the nematic
interface.

For Il~g(ee)' on which Eq.(4.144) holds, ro and ~o can be
easily expressed in a closed form as a function of Rex and G.
Before substituting Eq.(4.71b) into the definitions of Rex and G,
it is helpful to note the following identity. For an arbitrary
variable w which is a function of Hand Il, the value of the
partial derivative of n with respect to w at r=ro can be written
as

an
aw

a~o
--An
aw

an
- ro-

ar
a[-lnro] ,
aw

(4.146)

where

A=(: : -~\
o 1 0 ),

and

Here, use has been made of the fact that an sl all=0 at r=ro as
coming from the assumption of Eq.(4.144). Using this result in
Eqs.(4.106) and (4.107), while in turn substituting Hand Il for
w, we find

+ (2HK n) 1/2- 3'"
a~o 1/2 a 1/2= -2H -[H In(Rexlro)],
aH aH

(4.147)

and
+ (2HK n) 1/2- 3'"

a~o a= 2H -(lnro) + GCT, ,uj,H,e i .
all all (4.148)

where the positive and negative signs on the left-hand side
corresponds, respectively, to whether the azimuthal angle ~
increases or decreases with r:

+ (2HK n) 1/2- 3'" C4.149)
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An integration of Eq.(4.147) with the initial condition, ~0=0 at
H=oo (fo=O), yields

(4.150)

Then, differentiating this expression by P and substituting into
Eq.(4.148), we obtain

aLnre = InRex - 2P- InRex - pG/H.ap (4.151a)

Use of the thermodynamic relation for G, Eq.(4.124), in the above
leads to

a 2lnro = InRex - Pap In(Rex IRs)'

a a= InRex - 2P- In(Rex/Rs) + Pai In r s'ap

which, upon application of Eq.(4.130), yields

lnro = InR +ex (4.151b)

Although Eq.(4.151a) is a purely geometrical expression,
Eq.(4.151b) is a geo-thermodynamic formula, which depends not only
on the present state of the system but, as it stands, on the
process through which the system is brought from the planar
geometry. Now, by combining Eqs.(4.150) and (4.151b), we get

(4.152)

B. Geometrical significance of Rex: the point of closest approach

Equation (4.152) show that, under a finite deformation, ~o
does not in general vanish; so, it cannot necessarily be possible
to find a point on an arbitrary trajectory where the director
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coinci de wi th n e' There are however some special cases wherein
such event does occur: (1) when ~=O, and hence when the
deformation is purely polar, (2) when Rex=Rs' and (3) when the
integral is not dependent on~. The first is obviously a
geometrical requirement of any polar deformation satisfying the
condition that n-+ne as fo-+O. The second and the third will be
later shown to correspond to the cases of an infinitely strong
and a direction-independent orientational anchorages,
respectively. Anyway, in all of the above listed situations, we
have ro=Rex from Eq.(4.1S1b) and vice versa, showing that Rex
represents the point of "closest approach" to ne'

In case there exists a point where n=ne holds, it is
intuitively quite obvious that it should occur at Rex' because Rex
refers to a hypothetical surface of demarcation across which no
orientational work is done as the nematic is deformed.

1. General cases
Let np and na be, respectively, the unit vectors along the

meridian and the azimuth circle at ne as shown in Fig.4.16.

r

polar

FIG.4.16. Definition of the polar
and the azimuthal unit vectors.
Under a finite deformation,
the equilibrium trajectory does
not necessarily pass through
the easy axis.
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Then, for sufficiently small ~o and ~=(2H/K3)1/2Inr/ro,
n (~ , f3) may be expanded to give

n(~,f3)""" [I + oT(~o)][ne + t; ans(O,f3)/a~]

ae(O) a~(O)
= ne + ~osinee na + ~ [ a~ np + sinee a~ na] ,

(4.153)
According to Eq.(4.74), thiswhere I denotes the unit tensor.

expression is shown to be valid as long as I r-ro I «A, with A
being the characteristic length of director deformation.

Further, from Eq.(4.63), we have

(4.154)

Reflecting the cases in which e and ~ increase or decrease with
~, there arise four possible trajectories for each f3 as shown in
Fig.4.16. Putting Eqs.(4.150) and (4.154) into Eq.(4.153), we
obtain

]1/21n( x t t:«) np
g( e e)

f3---In(rlro) ]sineena.
g( e e)

(4.155)
The separation between the director on an equilibrium trajectory
and ne is therefore in general seen to be a quantity of the order
of fo1/2, except that

or

under which the director satisfies n(Rex)=ne + 0(fo1/2). The
former is just the condition discussed above in relation to the
case wherein n(Rex)=ne is rigorously satisfied. On the other
hand, the latter is a condition for specifying a trajectory which
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is tangent to the azimuth passing through ne, namely the
azimuthal deformation. In this case, although the director at Rex
does not strictly coincide with ne under a finite deformation,
Eq.(4.155) shows that it asymptotically approaches the easy axis
at a relatively faster rate [o(fo1/2)] than at any other point on
the trajectory.

To be more quantitative, let us define the element of
distance on the unit sphere by

(4.156)

which reduces the determination of the equilibrium trajectory
between two arbitrary points to the exploration of the trajectory
with the shortest path length on the unit sphere [24]. Based on
this measure of length, it immediately follows from Eq.(4.155)
that the separation between n(r) on an equilibrium trajectory and
ne is given by

[1 -
{3

g( 8 e)

g( 8 e)
+ {3 [In(Rexlro)-

{3

Hence, it is now clear that for any {3, the trajectory comes
closest to ne at the point of extrapolation, i.e. r=Rex. This is
of course valid up to the order of fo1/2.

2. Summary of result
If the special measure of length as defined in Eq.(4.156) is

employed, the point of extrapolation acquires a very transparent
geometrical significance as the point where the separation between
the director and the easy axis becomes minimum.
either of the following three cases,

However, only in

(1) {3 = 0, (2)
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and (3) a
a/3 (4.157)

the point of closest
approach bears a quali-
tatively different sta-
tus, asymptotically at
least, which allows its
interpretation as a

rposition where the
director behaves as if
it were always pinned
along the easy axis

FIG.4.17. Geometrical concept of
the point of extrapolation.

regardless of the
strength of orientational deformations. [see Fig.4.17].

4.6.2 Connection with the Rapini-Papoular formalism

A. The model
As a natural and a most general extension of the original

Rapini-Papoular model of a planar nematic interface [29], we would
postulate that the thermodynamic potential Q of a volume
including a curved nematic interface may be expressed as a
functional of the director field n(r) in the following form:

Q [ n ;w , Ra'Rb'R] = - PV + Fd[n ;w , Ra'R] + w R r RP (no) ,
(4.158)

where Fd represents the Frank elastic energy for a bulklike
nematic volume subtending the angle w in between the boundary at
Ra and the nematic interface at R [cf. Eq.(4.55)], and rRP' which
is here regarded as a function of the director at the interface
no alone, is the tension of an infinitely thin membrane
demarcating the nematic from the substrate fluid. This expression
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now involves two unknowns, the position of the interface R and the
director field n(r); they are determined in such a way as to
minimize the thermodynamic potential under given boundary
conditions. In this type of model, it is of course required that
the equilibrium director profile, derived this way, and the
resulting thermodynamic potential should correctly reproduce the
actual ones in equilibrium. This constraint imposes some
restrictions on the model and facilitates a bridge with the
equilibrium thermodynamics.

B. The allowed choice of the interface in the Rapini-Papoular
model

Subjecting Eq.(4.158) to a virtual change in R, we find

o = oQ
oR (4.159)

where a~r is the rr-component of the Ericksen stress. As
mentioned above rRP must be in equilibrium equal to the
thermodynamic interfacial tension relative to the dividing surface
at R. So, Eq.(4.159) is just the Laplace equation for a curved
nematic interface [see Eqs.(4.40) and (4.42)]. Therefore, (as the
Laplace equation is satisfied only at the surface of tension,) in
the present form of the Rapini-Papoular model, only the surface of
tension can be regarded as the "effective" interface of the
nematic:

(4.160a)

As a consequence, we must also have in equilibrium

r RP I = r s 'eq
By adopting the director at the surface of tension ns as an
independent thermodynamic variable in stead of Hand p, it

(4.160b)

follows from Eq.(4.160b) that
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r RP I = r RP (n s) = r s(n s).eq
Therefore, rRP should be uniquely determined when the director at

(4.160c)

the "interface" is given. As clear from the argument in Section
4.4.1, this is a direct consequence of the use of a linear
formalism, the Frank theory, for describing the curvature
elasticity of bulk nematics. Hence, in the Rapini-Papoular
context, there is no room for rRP to involve the spatial
derivatives of the director as additional independent variables
besides no as suggested by Dubois-Violette and Parodi[30], and
Mada[31]. This fact also precludes the possibility of treating
the "second order elasticity" term, introduced by Nehring and
Saupe [32], as a purely surface term to supplement the Frank
elastic energy for bulk nematics [23,33,34]. These restrictions
have also been pointed out recently by Barbero, et al.[35], and
Oldano and Barbero [36,37] based on the consideration of the
uniqueness of the equilibrium director profile. Nevertheless, it
should be emphasized that the above result is not to deny the role
played by such terms, but is only to imply that these
contributions, even if exist, should be expressed in one way or
another as a function of no for the sake of thermodynamically
consistent treatments. This point will also be discussed in
Chapter 5 from a statistical mechanical view point.

That Eqs.(4.160a-c) are also compatible with the condition of
equilibrium with respect to the director can be readily confirmed
as follows. By applying the variational calculus to Eq.(4.158)
with regard to nCr), we obtain the Euler-Lagrange equation for
bulk profile, which is formally independent of interfacial
properties, and the torque balance equation at the interface
which reads

(4.161)
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where h is the Lagrange multiplier to take care of I n 1=1.

Substituting Eq.(4.160c) into the right-hand side of the above, we
find

(4.162)

which is just the equation which follows from the generalized
Gibbs equation, when the dividing surface located at Rs [cf.
Eq.(4.123)]. Since the bulk profile is clearly invariant as long
as the director at the boundary is fixed, this result shows that
the Rapini-Papoular model, as envisaged in Eq.(4.158), can be
consistent with thermodynamics, if and only if the "interface"
appearing in the model is identified with the surface of tension.

C. The anchoring energy and its relationship with the
thermodynamic parameters

Let us now focus on the weak deformation regime in order to
elucidate the connection of Rex with the anchoring strength as
defined in the Rapini-Papoular formalism. As n now resides more
or less near ne, we can approximately write

(4.163)

where np and na are the unit vectors defined in Fig.4.16; and,
Cp and Ca denote the respective components of n. According to
Rapini and Papoular, we assume that, when the director is
sufficiently near the easy axis, the interfacial tension rRpCno)
may be written as

C4.164)

where Ea(p) and Ea(a) are the polar and the azimuthal anchoring
energies, respectively.

In equilibrium, the director at the surface of tension can be

4 - 78



approximately obtained with the use of Eqs.(4.151b) and (4.155) to
give

(4.165a)

(4.165b)
For purely polar [{3=O] and azimuthal [{3=g(Se)] deformations,
therefore, Eq.(4.164) yields
(i) Polar:

rRP I eq = r « + Ea(p) H[ln(Rex/Rs)]2/K3f(Se)'
(4.166a)

(ii) Azimuthal:

As
.......r 0 + Ea(a ) sin2S e f0 (Rex-Rs)21K3g(S e) .

noted in Eq.(4.160c), rRP has to be, in equilibrium,

ro + Ea(a) sin2Se H[ln(Rs/Rex)]2/K3g(Se)'
(4.166b)

rRP I =eq

equal to rs' At small fo, it is readily shown from Eq.(4.131)
that rs can be written as

ffOr s = r 0 + 2f0 (Rex-Rs) - 0 (Rex -Rs)df0 • (4.167)

Thus, by combining Eqs.(4.166a,b) and Eq.(4.167) while taking the
limit of fo~O, we arrive at an expression for the anchoring
energies:
(i) Polar:

(4.167a)
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(ii) Azimuthal:
Ea(a) sin28e/K3g(8e) = lim 1/(Rex-Rs).fo ....•O

(4.167b)

As shown in Section 4.6.1, in the case of a single mode
anchorage, Rex gives (at least approximately) a point where the
director would lie along the easy direction, if the bulk profile
were extrapolated. So that, Rex-Rs must be regarded as the
extrapolation length in de Gennes' sense. Consequently, the above
results are seen to be completely consistent with the ordinary
formula relating the extrapolation length to the anchoring energy.

Finally, the physical meaning of the previously made
distinction between the "normal" and "singular" behaviors as
regards lim(Rex-Rs) is now clear. In the former case, which is
characterized by the fact that (Rex-Rs) converges to a finite
value, Eqs.(4.167a,b) show that the orientational anchorage is of
finite or infinite strength. In the latter, however, since
(Rex-Rs )....•00, we see that the anchoring energy should vanish,
allowing an almost free rotation of the director at the interface.
Except that the symmetry of the system demands,
rather uncommon situation.

it is obviously a
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4.7 Generalized Gibbs equation in the near planar regime and the
thermodynamic definition of the anchoring strength

Though it is possible to derive various thermodynamic
relations by directly starting from the original form of the
generalized Gibbs equation, (which is valid as long as the
orientational torque per unit area is much smaller than the
interfacial tension), the results are not necessarily convenient
to figure out the nature of the nematic interface in an
intuitively comprehensible manner. Here, we transform the Gibbs
equation into more specialized forms which hold at small interface
curvatures, so as to facilitate an easy bridge from the results in
the former sections to physically transparent thermodynamic
relations. This also enables us to define the anchoring strength
in a thermodynamically meaningful manner.

4.7.1 Expansion in terms of the curvature
As the interfacial tension becomes large and/or the elastic

deformation weak, the interface tends to assume an almost planar
configuration [Fig.4.181.

for any degree of

We shall first derive an
equation which is valid

deformation as long as
the curvature of the
interface is sufficiently
small.

This is technically y. ((;J~/~~)~~1~1~~~7L...~
a recurrence of the case 4XIO;2

of a hard wall-nematic
interface, in which we
started the argument with
the relation

FIG.4.1S. Relationship among the interface
curvature R-1, the interfacial tension ys'
and the Frank elastic energy density foe
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As H is spatially constant, we see from the above that

o = dfo/dr + 2fo/r,

so that we find that fo should also be spatially invariant up to
first order in the curvature of the interface R-1.

Putting H=R2fo into Eq.C4.114) and retaining only the terms
of lowest order in R-1, we obtain

fRRex afo= - [ss + dr +
aT

dr +
afo I ani CRex)

aCdni/dr) R aJ1.jex
aRex+ 2d[foCRex - R)l + CRs - Rex)dfo - [GpCT,J1.j,fo,t3)+2foat3 ie s .

C4.168)
where nCRex) implies that the director at the point of
extrapolation should always be taken during differentiation.
Furthermore, it follows from Eq.C4.124) that Gp thermodynamically
satisfies

(4.169)

It must finally be remembered that the higher order correction to
the above is of the order of O[(Rex-R)/Rldfo1/2.

If we wish to focus on a particular mode of anchorage, we
need to regard the variable t3 as a function of T
example, in order to exclusively deal with

and
the

J1.j; for
azimuthal

anchorage, we have to set t3=gC8e). In this case, Eq.(4.174) can
be rewritten in a bit simpler form, which reads
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_ [Ss + fRex afo afo I an i(Rex' J3)dr = dr + ldT
R aT a(dni/dr) R aTex

fRex afo afo I ani (Rex' f3 )[r j + -- dr + 1du j
R aJlj a(dni/dr) R aJljex

(4.170)
Finally, it is of interest to note that, when R=Rs' Eqs.(4.168)
and (4.170) are reduced to essentially the same form as those for
a hard wall-nematic interface [cf. Eq.(4.117)]. Although, in the
latter remains an additional term, -fodX, which comes from the
athermal nature of the hard wall, this contribution vanishes when
the dividing surface is located at a point fixed relative to the
hard wall.

4.7.2 Expansion in terms of the elastic energy: Formulation based
on the stress-strain relationship

For weak deformations, Eq.(4.151b) can be approximated to
give a

ro - Rex = f3 af3(Rex - Rs)'

Then, substituting the above into Eq.(4.155), we can write the
polar and the azimuthal angles of the director at Rex as

= 8e

<P ex
(4.171)

These are correct up to the order of fol/2, and clearly, when
f3=0, J3=g(8e), or a(Rex-Rs)/af3=O, we have n(Rex)=ne.

Next, utilizing the expression of the Frank elastic energy
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density in terms of polar and azimuthal angles, i.e.,

1 (de)2fo = - K3[f(e) -
2 dr

c cp)2
+ g ( e) dr ],

we generally find

(
af 0) = f 0 {[ 1 _
aT n

{J a f3
-- ] aT In[K3f (e )] + --gee) gee)

(4.172)
Similar equations are obtainable for chemical potentials also. In
relation to the above, it should be pointed out that, when the
Frank elastic constants are assumed to be proportional to each
other,

(4.173)

Eq.(4.172) can be very simplified to

(~o) = fo
aT n

a
aT InK3, (4.172' )

as we have already noted as regards the thermodynamics of bulk
nematics [cf. Eq.(4.91)]. Equation (4.173) is a much weaker
constraint than the so-called "one-constant approximation," and
we shall hereafter refer to it as the "scaling constant
approximation."

As a final preparation, we derive an expression for the
curvature stress L. According to the elasticity theory, the
curvature stress components, Lp and La' along the polar and
azimuthal directions are respectively defined by

and afoL = - n . ,a a1a(dn./dr)
1

which are, in terms of spherical polar coordinate, rewritten as

= - and
(4.174a)
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These represent the orientational torque per unit area transmitted
along the interface normal (r-axis). Because of the presence of
the torque which is laterally transmitted through the boundary
surface parallel to the r-axis, the over all balance of the torque
does not necessarily require L to be spatially constant throughout
the nematic. However, since this lateral contribution is of the
order of fo, Lp and La can be regarded to be a constant of
deformation as far as terms on the order of f01/2 are concerned.
In terms of fo and~, Lp and La can be readily written, up to an
appropriate order, as

Lp = + [2foK3f(Se)]1/2[1 - ~/g(Se)]1/2,

La = + [2foK3~ ]1121sin S e.
(4.174b)

Likewise, the curvature strain, which is defined by
n-ne=cpnp+Cana' can be expressed on account of Eqs.(4.155) and
(4.174b) as

(4.175)

Combining Eqs.(4.171)-(4.174) with Eq.(4.170), we get

- fo(R - R)[1 -ex
a
as e

a
as e

(4.176a)

Furthermore, this equation adopts an extremely simple form in the
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case of a single mode anchorage as follows:
(1) Polar [13=0],

a- fo(Rex - R){d[lnK3f(ee)] - [- lnf(e )lde }ae e ee

(4.176b)

(2) Azimuthal [13=g(ee)]'

dr = - SSdT - IjdJ1j + Ladcf>e

a- f0 (Rex - R) {d [lnK3g (e e) 1 - [- lng (e )]de}ae e ee

(4.176c)

Finally, when the dividing surface is located at Rs' these
equations can be expressed in a compact form in terms of the
curvature stress and strain as follows:

f3 a- fo(R -R ){[1- -- ]- lnfCe )ex s gCe ) ae ee e
+

13 aae lngCee)}dee'gCee) e

(4.177)

which is, as it should be, identical with what follows directly
from Eq. (4.123).

4.7.3 Thermodynamic definition of the anchoring strength:
The extrapolation length and the anchoring energy

The Rapini-Papoular's definition of the anchoring strength is
thermodynamically quite unsatisfactory. First, their definition is
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based on a semi-microscopic concept of the "director at the
interface," which, as already noted, needs further specification
from a thermodynamic point of view. Next, another serious
shortcoming is the fact that the functional form for the
interfacial tension was chosen on a rather ~g hQ~ basis without
regard to its thermodynamic foundation; accordingly, the
phenomenological meaning of the anchoring energies were left
ambiguous, thereby having made them useful only for limited
descriptive purposes. We shall here offer a thermodynamic
definition of the anchoring strength.

In Section 4.6, we have seen that, for both P=O and
the limiting distance between the surface of

extrapolation and the surface of tension deo=lim(Rex-Rs) can befo...•O

identified, insofar as it exists, with the extrapolation length in
Rapini-Papoular's sense. In addition, we have seen in Section 4.6
that, when Rex-Rs=O, the equilibrium director profile passes
through ne at Rex=Rs' and in this case furthermore, the
interfacial tension remains at the value of the undeformed state
even when the nematic is deformed. These are all the correct
properties that an infinitely strong anchoring must have, which
are familiar in the Rapini-Papoular context. Based on these
properties, it appears natural to generally define the
"thermodynamic extrapolation length" via

(4.178a)

Note that this definition is not restricted to an infinitesimall
deformation, but remains meaningful however strongly the nematic
is deformed. In the case of a hard wall-nematic interface, this
may be replaced by

(4.178b)

It is also illuminating to recall the fact that at the point of
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extrapolation, the director approaches closest to the easy axis,
when the director configuration in the bulk nematic is
extrapolated. This also shows that the definition of the
extrapolation as given above can be regarded as a generalization
of de Gennes' concept of the extrapolation length.

From Eq.(4.168) or (4.170), we readily obtain

(~\
af 0 )T, /l. • , f3

J

In particular, we find from this equation that the limiting value

(4.179a)

of the extrapolation length de is given by

lim (~\
fo-+O afO/T,/l..,f3

J

In contrast to Rapini-Papoular's definition,

(4.179b)

these formulas
express the anchoring strength in the form of a susceptibility of
the interfacial tension to the Frank elastic energy density in the
bulk nematic, both of which are well-defined regardless of
whatever inhomogeneity exists within the interfacial transition
region. As a result, if the interfacial tension is measured as a
function of the orientational deformation, the extrapolation
length can be calculated via the above equations. This point has
an important consequence for statistical mechanical treatments of
the orientational anchoring strength [see Chapter 5]. Since it
does not matter much in most cases which of de or deo is actually
employed, we shall hereafter express both of them simply by de;
when there is a need of distinction, we write the former as de(fo)
by explicitly showing its function dependence on fo_

Next, let us define the anchoring energy, in a slightly
generalized form than Rapini-Papoular's, and investigate how it is
related to the extrapolation length. Recall the fact that, as an
independent orientational variable, we can take the equilibrium
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director at an arbitrary point instead of (H,~) or (fo,~).
Therefore, it follows in particular that rs can be written as a
function of the director ns at the surface of tension. By
focusing on the weak deformation regime, we can write

(4.180)

where Csp and Csa are, respectively, the polar and the azimuthal
components of ns with respect to the local rectangular coordinate
taken at ne [cf. Eq.(4.163)]; see also Eqs.(4.165a,b) and
Fig.4.16. It should be emphasized that although Eq.(4.180) is
formally similar to the Rapini-Papoular interfacial free-energy
functional, they are radically different from each other in that
the former is strictly an equilibrium quantity expressed as a
function of the thermodynamic variables Csp and Csa'

FIG.4.19. Interfacial tension
as a function of strain.

Csa

(azimuthal)

At Csp=Csa=O, which corresponds to a planar interface, r s is
equal to r 0, and,
will increase or

as Csp and Csa move aw~y from the origin,
decrease depending on the sign of

rs
the

extrapolation length, Rex-Rs' In Fig.4.19, rs is schematically
illustrated over the Csp-Csa plane.
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In the Rapini-Papoular formalism, the anchoring energy is
introduced as a coefficient denoting the rate of increase of the
interfacial tension when the director at the interface undergoes a
deviation from the easy axis. Let us consider the change of
for each mode of anchorage specified by p. At constant e .
and Csa move on a straight line in sufficient vicinity of the
origin, and now we would like to introduce a measure of the
separation between the interface director ns and the easy axis
via

[f(S )C 2 + g(S )C 2/sin2S ]1/2= e sp e sa e
{f(S )[1-P/g(S )] + Plsin2S }1/2'e e e

(4.181a)

which is rewritten, by using Eqs.(4.174b) and (4.175), as

(4.181b)

Obviously from the former equation, Cr=Csp and Cr=Csa for purely
polar and azimuthal deformations, respectively. Furthermore, it
should be noted that Cr is, except for the denominator, identical
with the measure of length on the unit sphere used in the last
section, which has allowed the interpretation of Rex as the point
of closest approach to ne.

For each P, we define the anchoring energy Ea by the
curvature (with respect to Cr) at the origin of the curve of
intersection between rs(CsP,Csa) and the perpendicular plane
containing the straight line as noted above:

E _ (a2r s)- 2 at Cr=O,
a aCr T,/l..,p'

J

(4.182)

This definition yields the Rapini-Papoular anchoring energies
Ea(P) and Ea(a) for pure polar and azimuthal anchorages [see
Eq.(4.167)]. For an arbitrary mode of anchorage, straightforward
calculations show that

4 - 90



fce )[l-/3/g(e )] + /3/sin2e
e e ~ (4.183)KE =-.:L

a d
e

Because the second factor is always positive, Ea has the same sign
as that of the extrapolation length. However, it is in general
only in the cases of purely polar or azimuthal deformations that
the formula, Eaoo1/de, is obtained, as is familiar in the Rapini-
Papoular formalism.
present choice of Cr.

This is not an artifact resulting from the
To illustrate this point, let us consider

the case in which de is finite, but ade/a=oo. Equation (4.183)
now indicates that Ea=O, i.e., a vanishing anchoring strength.
And, in accordance with this result, Eqs.(4.17S) and (4.179) show
that, for finite Csp and Csa' we must have fo=O and hence rs=ro.
This is just the property reminiscent of the zero anchoring
strength. Therefore, the thermodynamic definition of the
anchoring energy as given above is dependent not only on the
extrapolation length de for the particular mode of anchorage in
question, but also on how de behaves for neighboring modes.
However, when de is independent of /3, Ea can be written in a very
simple form,

+ (4.184)
/3 1

which shows that the anchoring energy for a mode of /3 is given by
a weighted harmonic mean of the anchoring energies for the polar
and the azimuthal anchoring energies.

As appreciable from the above discussions, the extrapolation
length is a more fundamental concept in thermodynamics than the
anchoring energy; the anchoring energy comes afterward via some
additional definition CRapini-Papoular formula is a kind of this).
And, even more significantly, the extrapolation length, though it
might be understood to be meaningful for only infinitesimal
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deformations, can be naturally generalized to finite deformation
regime in a thermodynamically consistent manner by defining it as
Rex-Rs·

One of the remarkable features of Eq.(4.183) is that the p-
dependence of Ea can in principle be quite complicated, showing a
sharp contrast with the simple dependence assumed in the Rapini-
Papoular formalism. Put differently, this is an indication that
thermodynamics tells nothing on how the anchoring strength should
be influenced by the mode of deformation to couple. This is
indeed a task of microscopic theories. From the stress-strain
formulation of the thermodynamics, i.e., Eqs.(4.123) and (4.177),
we have at fixed temperature and chemical potentials

Consequently, the Rapini-Papoular form of the interfacial tension
as in Eq.(4.164) amounts to assume (arbitrarily) a linear
relationship as

and

4.7.4 Thermodynamic inequalities for the stability of macroscopic
alignment: Finiteness of the anchoring strength

Let us finally give a formal proof for an intuitively obvious
fact that the anchoring strength is thermodynamically related to
the stability of the macroscopic alignment. Here, we suppose that
the system in question (including the interface) is immersed in a
huge environment comprised of the deformed nematic within the
boundary located at Ra [see Fig.4.S]; Rb-Ra«Ra.

As well known, the condition of thermodynamic equilibrium can
be stated in the form that the minimum work needed to bring the
system from the equilibrium to any neighboring state should be
positive [38]. Let Qenv be the grand thermodynamic potential of
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the environment. For a process taking place at fixed temperature,
volume, and chemical potentials, the minimum work oWmin is
required when the process is reversible; so that, it follows that

(4.185)

Furthermore, on the assumption that the environment itself is
always in thermodynamic and mechanical equilibrium, the condition
of the equilibrium of the system reduces to

(4.186)

Expanding 0 Q in powers of oni (Ra) by regarding Q as a
function of ni(Ra), we find up to second order

aQo Q = on. +
1

(4.187)

Upon substitution of the above into Eq.(4.184), the first term
cancels out when combined with the second in Eq.(4.184), and we
are left with

(4.188)

where use has been made of Eqs.(4.94) and (4.95). Note that the
quantity in the square brackets is symmetrical concerning the
exchange of ni and nj. The above inequality should be satisfied
for any infinitesimal rotations of the director, obeying I n 1=1.

For small deformations, Eq.(4.186) can be transformed to

(4.189)
where Cp and Ca are the polar and the azimuthal components of
n-ne at Ra' In order that this inequality holds for any oCp
and oCa' the following two conditions should be satisfied:
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(4.190)

and
(4.191)

In terms of the Jacobian, the latter can be further written as
a(Lp,La)
aCCp,Ca)

> o.
So that, we find

a(Lp,La)/ a(Lp'Ca)
a(cp' Ca) / a(Lp' Ca)

which, in combination with Eq. (4 .188) , yields
aLa

> O. (4.192)
aCa Lp

Equations (4.188) and (4.190) are the thermodynamic inequalities
characterizing the stable and metastable orientational states of a
surface-aligned nematic under curvature stress. Qualitatively,
they indicate that, as the director is rotated from the easy axis,
the restoring force should monotonically increase.

The inequalities derived above can be translated to a
condition for the extrapolation length by changing the independent
variables from Cp and Ca to fo and p. As clear in Eqs.(4.174b)
and (4.175), the curvature strain and stress are proportional to
fo1/2 under weak deformations; so that, by temporally defining the
functions of p, x(P), y(P), X(P) and Y(P) via Lp=ifo1/2x(p),
La=ifo1/2y(p), Cp=-fo1/2X(p), and Ca=-fo1/2y(p), we can rewrite
Eqs.(4.188) and (4.190) as follows:

a(Lp'Ca) = a(Lp'Ca)/ a(fo, P)
a(Cp'Ca) a(Cp'Ca)/ a(fo, P)

xY' - x'y
= > 0,XV' - X'Y

(4.193)
and
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a(La,Lp)
a(Ca,Lp)

= a(La,Lp)/a(fo,{3)
a(Ca,Lp)/ a(fo, {3)

=
yx' - y'x
Yx' - Y'x > o.

The, substituting x, y, X, and Y as obtained from Eqs.(4.174b) and
(4.175), we find after some straightforward calculations that if

I de I < 00,
a

I - de 1< 00,a{3 and
(4.194)

are simultaneously satisfied, there exists a critical thickness
d=dc for each {3, beyond which the thermodynamic inequalities
hold. The appearance of the critical thickness is obviously
related to the inhomogeneous nature of the system under
consideration; so, it is natural to expect that dc is the quantity
of the same order of magnitude with the physical thickness of the
interfacial layer. The first two inequalities of Eq.(4.194) is,
as observed from Eq. (4.183), equivalent to require that I Ea 1<00.

So that, they are seen to be connected with the stability of the
director configuration with respect to the director rotation which
conserves {3. The final one is thus related to the stability for
the change of mode at fixed elastic energy.

When, in particular, the deformation is restricted to be of
single mode, the condition of local stability reduces to

I de I < 00, (4.195)

which also implies a non-zero anchoring strength. When the
equality holds in the above, the alignment becomes unstable. This
case may correspond to an "orientational critical point" where the
alignment undergoes some kind of phase transition.
discuss this point in more detail in Section 4.9.

We will
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4.8 Thermodynamic relations

By applying Maxwell's relation to the generalized Gibbs
equation, Eqs.(4.170), (4.186a) , or (4.177) , it is now a
straightforward matter, for any mode of anchorage, to derive
formal thermodynamic relations which hold among interfacial
quantities. However, unless the anchorage is polar, azimuthal, or
isotropic, this procedure yields in general a very complicated
expression involving the ~-derivative of the extrapolation length
de. Though this may well be of theoretical interest, there is at
present available no experimental information on how a nematic
interface does behave, when subjected to such a mixed-mode
curvature deformation. So, we shall here limit the argument to
the cases of simple anchorages, whenever it becomes otherwise too
lengthy.

4.8.1 Adsorption at a deformed nematic-fluid interface

A. Adsorption as a function of orientational deformation
As already noted in relation to the case of ordinary fluids

in two-phase equilibria, the temperature and the chemical
potentials can not be in general changed independently of each
other. From the Gibbs-Duhem equations for the bulk (isotropic)
fluid and the nematic reservoir mutually in equilibrium under a
common pressure P [cf. Eq.(4.12)], we get

(4.196)

where Lls and LlPj are, respectively, the phase-to-phase
differences of the entropy density and of the molecular number
density of the j-th species. For a process taking place at
constant temperature, substituting d~l from Eq.(4.196) into
Eq.(4.170) yields
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f:ex ofo ~p . f:ex ofo
dr = - r r , + - dr - -J(r + dr) 1dJljJ OJlj ~p 1 1 OJl1

ofo I [oni (Rex' f3 ) ~Pj oni (Rex' f3 ) 1du jo(dni/dr) R oJl· ~P1 OJl1ex J

(4.197)
where the summation over j runs over all components but the first.
As we have done for ordinary fluids [Section 4.1.31, it is easy to
show, on account of the expression for bulk densities [Eq.(4.90)1,
that the quantity in the first square brackets is independent of
the position of the dividing surface R.

Next by applying Maxwell's relation to Jlj and fo in the
above and integrating by fo at fixed T and Jlm (m~1), we obtain

ofo I oni (Rex' (3)

o(dni/dr) R OJljex

(j~2).
(4.198)

In this expression, Jl1 is regarded as a function of T and Jlm (m~
2), and 1rj stands for the adsorption of the j-th component
relative to the first, i.e., 1rj=rj-(~Pj/~p1)r1; the
subscript 0 denotes the quantity at fo=O. It should be noted that,
in an orientationally deformed nematic, 1r. is no longer a

J
constant independent of the location of the dividing surface as in
ordinary liquids. The above equation also applies to the case of
a hard wall-nematic interface, provided the variables are reread
appropriately.

For weak single-mode deformations with the dividing surface
taken at Rs' we obtain from Eq.(4.176b):
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(i) Polar anchorage (P=O),

a
oe

oelnf(e )]_e
e 0/1 '

J

+ o(fo), (4.199a)2K3f c e e)

where Lp is, as before, the torque transmitted per unit area
across the interface as given by Lp=;[2foK3f(ee)]1/2. For the
azimuthal anchorage, on the other hand, we obtain from Eq.(4.176c)
a slightly different expression:

(ii) Azimuthal anchorage [p=g(ee)],

1['sj 1 ae e 2
= [' oJ' + L -- + L

a 0/1' a
J

a
oe

oelng(e )_e
e 0/1'

J

+ o(fo), (4.199b)

In particular, when the scaling
constant approximation (K1OCK2OCK3)holds, Eqs.(4.199a,b) reduce to
(i)

1 1 oe L 2 1 0 de['sj = I'OJ + Lp _e+
O/1j p 2f (e ) O/1j

,
e K3

(4.200a)
and (ii)

1 1 ofPe 2 1 0 ~['sj = I'o· + La - + La ,
J O/1j 2g (e e) O/1j K3

(4.200b)
respectively. Here, it must be noticed that Eq.(4.200a) is
completely identical with Eq.(4.198) restricted to polar anchorage
owing to and

Obviously, this is not necessarily the case for
an azimuthal anchorage. In terms of the strain components at the
surface of tension Csp and Csa given by Eq.(4.175), the above
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equations can be transformed, under sufficiently weak deforma-
tions, to give
(i)

1 1 K3f(Se) as 2 f(S e) a K3r sj = r OJ + Csp _e - Csp ,
de aJl.j 2 aJl.jde

(4.200c)
and (ii)

1 1 K3g(Se) aCPe 2 g(S e) a K3r sj = r OJ + Csa - Csade aJl.j 2 aJl.· deJ
(4.200d)

The above results indicate that the adsorption at a deformed
nematic-fluid interface is affected by the orientational
deformation of the nematic in two ways: (1) the change of the
pretilt angle induced by composition (or pressure) variation, and
(2) that of the anchoring strength. In parti cular, it is worth
pointing out that the effect of the anchoring strength is
quadratic in the curvature stress (and strain), so that it is
uniquely determined only by the absolute strength of the
deformation, in whatever direction the director is distorted. As
to the contribution from the pretilt angle, however, the
adsorption may increase or decrease depending on the sign of the
curvature stress. Specifically, when the nematic is deformed in
such a way as to enhance (oppose) the effect of the addition of
the j-th component, the adsorption will be increased (decreased)
as the nematic is more and more deformed.
Le Chatelier's law.

To make an order-of-magnitude estimate, let us assume that

This is in accord with

the j-th component is a trace impurity with the mole fraction cj;
so that we can use the ideal solution formula. For simplicity,
furthermore, we adopt the scaling constant approximation. Then,
in the case of a polar anchorage, Eq.(4.200a) is rewritten as

~
as 2 a de1 1 e Lp Cjr sj = r OJ + + (4.201),

kT aCj 2kTf(Se) aCj K3

4 - 99



where k is the Boltzmann constant. In Fig.4.20 shown is an
example of the change of the adsorption with Lp; wherein, we have
assumed

asc. e = -10,
J ac.

J

and

of the pretilt angle and,
Since no systematic measurement has ever been made on the changes

associated with the
addition of an impurity,
these values were
adopted rather arbitra-
rily here, with the
situation as shown in
Fig.4.21 in mind.
Although this choice of
parameters corresponds
to the case wherein the
pretilt angle and the
anchoring strength
should change drastical-
ly over a rather narrow
range of impurity con-
centration, those values
may not be so unrealis-
tic in view of the fact
that the alignment of
nematics is often forced
to change from planar to
homeotropic by a frac-
tional variation in the
amount of adsorbed
surface-active agent on

especiallX,_oLthe_ anchorJng strength
't:-Tn

adsorption S 0
(m-2)

.-anchorlng
strength
(reduced)

4xlO L (J/m2)-4 -2

,,,,,,.,,
:,,
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-2

.........
pretilt

(enhanced)

__ FIG.4.20. Variation of the adsorption
with the application of a curvature
stress.
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FIG.4.21. Conceived variation of the
pretilt angle and the extrapolation
length associated with the change of
the impurity concentration.
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a solid substrate [39].
Figure 4.20 reveals that at an Lp as large as 10-4 J/m2,

almost sub-monolayer adsorption (or desorption) of the impurity is
induced. If we denote the characteristic length of the elastic
deformation as A, Lp is approximately given by K3f(Se)/A.

K3f(Se)=10-11 N, we obtain A=O.l /1m for Lp=10-
is a level of deformation which is often achieved

Then, assuming
4 J/m2. This
under an electric field in practical liquid crystal cells. It
should, however, be pointed out that at this rather strong
deformation, the strain Csp assumes a value as large as 1 at the
nematic interface in question having de-0.1/1m.

B. Gibbs adsorption isotherm
Suppose a process associated with the change of chemical

potentials occurring at constant T and fo• By substituting
Eq.(4.198) into Eq.(4.197), we obtain the Gibbs adsorption
isotherm for a nematic interface:

ffo a
+ -- ( Rex - Rs ) d f 0 ] d /1 j ,

O a/1 .
J (4.202a)

where, as before, j is restricted to 2 and over, and /11 and P
are considered to be functions of the rest of the chemical
potentials. This equation is valid for any mode of anchorage, and
agrees with what we obtain by directly differentiating Eq.(4.167).
In the case of a normal behavior, Eq.(4.202a) reduces, up to first
order in fo, to

drs (4.202b)

In contrast to the adsorption itself, the above equations lack the
(direct) contribution from the pretilt angle, but contains only
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the part of the anchoring strength.
When the orientational strain ~ns=ns-ne is fixed, instead

of fo, while the chemical potentials are changed, we find from
Eq.(4.123)

___ O_f_O__ \ onei
o(dni/dr) Rs OJlj

which can be, upon application of Eqs.(4.199a,b), transformed to

(4.203a)

drs (4.203b)

provided the anchorage is purely polar or azimuthal. Equations
(4.202b) and (4.203b) show that, depending on which of fo and
~ns is fixed, the orientational deformation contributes to the
interfacial tension in an opposite direction. Intuitively
speaking, fo may be almost constant when the boundary opposite to
the interface, which is inducing the orientational deformation, is
located sufficiently far from the interface in comparison with the
extrapolation length; and on the other hand, ~ns is expected to
stay almost fixed when the counter boundary is very close to the
interface. As a result, they may well be viewed as representing
the two extreme boundary conditions. The actual experimental
situations lie somewhere in between, depending on the details of
how the deformation is brought about.

To illustrate the numerical consequences of those formulas,
let us investigate the case of a three-component fluid which is
comprised of a couple of mutually immiscible fluids, the
components "1" and "2," dissolved with a small amount of surface
active agent, the component "3." We regard here that the phase
consisting of the first component is in the nematic state, and the
phase with the second component is serving as a substrate for it.
And, to make the point clear, we further assume that the added
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surface active agent is not miscible to the substrate, either.
Because of the immiscibility, the chemical potential of the

substrate phase, 112' is not influenced, at constant temperature
and pressure, by an application of the third component. For the
nematic phase, we have, from the ideal solution formula

dl11 = - kT dc, and dl13 = CkT/c) dc,

where c is the concentration of the third component with respect
to the second. From Eq.C4.202b), we get

(~) =oc fo
C4.204a)

and especially for polar or azimuthal anchorage, we further obtain

(~) =oc I::lns
C4.204b)

So, if the surface active agent is to reduce the anchoring
strength, we should observe a decrease or an increase in the
interfacial tension as the nematic is orientationally deformed,
according to which of fo and I::lns is fixed during

K-10-11 Nand A-10-7m as before,
the

deformation. If we take
have fo-5 x i 02 J1m3. Therefore,

we

varies
if the extrapolation length

by 10-7m during the addition of 10-4 mole fraction of the
agent, we find from the above that the orientational contribution
to orsloc is about ±1 J/m2·Cmol fraction), and hence the
absolute change of rs is ±10-4 J/m2• Although the rate of change
is remarkably large, the absolute magnitude of the change is
negligibly small in comparison with the interfacial tension of
ordinary fluids, which is normally 10-3-10-1 J/m2•

Nevertheless, the change of the anchoring strength associated
with the addition of a surface active agent may not be necessarily
linearly dependent on its concentration as depicted in Fig.4.21.
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This presents a good contrast with the Langmuir type adsorption,
which is, at small concentrations, linearly dependent on the
concentration. Therefore, even though the absolute effect is not
large, the orientational effect is expected to presents a
qualitatively different feature characterized by the nonlinearity
and the dependence on the degree of orientational deformation.

4.8.2 Surface entropy and the temperature-dependence of the
interfacial tension

A. Surface entropy as a function of orientational deformation
In completely the same manner as for adsorption, we can

write down an expression for the surface entropy:

dr - af 0 I an i(Rex' (3 )

a(dni/dr) R arex

ffo a
+ -- (Rex - Rs) dfo,

o aT
(j~2),

(4.205)
where ISs represents the relative surface entropy with respect to
the first component as defined by

Here, too, ~1 and {3 are regarded as a function of other
variables. For a polar anchorage under a weak deformation, we
obtain, up to first order in fo,

ISs ISo + L 2 de a ae
= + [ Lp lnf(e )]_es p 2K3f (e e) ae e aT

+ L 2 a de ,p aT 2K3f (e e) (4.206a)

where the dividing surface is located at the surface of tension.
For an azimuthal anchorage, we get
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1ss 1S0 + a~e L 2 de a ae
= L -- + lng( e )_es a aT a 2K3g( e e) ae e aT

+ L 2 a de
a aT 2K3g (e e) (4.206b)

If the scaling constant approximation holds, the above equations
are respectively rewritten as

1Ss 1So + ae L 2 1 a de= Lp _e+ ,s aT p 2f r s ) aT K3e

1SS 1So + a~e L 2 1 a de= La - +s aT a 2g r s ) aT K3e

(4.207a)

(4.207b)

Furthermore, for sufficiently weak deformations, they can be
written in terms of the strain components as follows:

1Ss 1So KJfCee) ae 2 fCe e) ~Jt.J..
= + Csp _e - Csps ,

de aT 2 aT de

1ss 1So K3g(ee) ae 2 g(e e) a k-.d.= + Csa
__ e - Csa -s de aT 2 aT de

(4.207c)

(4.207d)
As evident in these results, the surface entropy is affected

by orientational deformations, if and only if there is a tempera-
ture-induced change of the easy axis and/or of the anchoring
strength. The effect of the anchoring strength, in particular, is
always such that when the anchorage weakens with temperature, the
surface entropy increases as the nematic is orientationally
deformed; therefore, the ordering near the interface should be
deteriorated more rapidly in the interfacial region than in the
bulk nematic under a curvature stress. On the other hand, the
contribution from the pretilt-angle variation is dependent on the
direction of the director deformation. When the nematic is deform-
ed in such a way as to enhance (oppose) the variation of ne with
temperature, the surface entropy increases (decreases) for suffi-
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ciently small deformations. In other words, upon application of an
orientational torque so as to pull back the director at the inter-
face toward the direction that the director assumes at lower
temperatures, the interfacial layer should be brought into a more
ordered state!

Figure 4.22 shows the surface entropy as a function of the
applied torque Lp, calculated based upon the scaling constant
approximation. Here, we have used the following values,

as__ e

aT = - 0.1 rad/K, and a
aT de = 3.4X10 4 m 2/J 'K,

K3

in view of the experimental results for the free surface of MBBA
(4-methoxybenzylidene-4'-butylaniline) reported by Chiarelli, et
a1.[40,41l. From the
figure, we see that the
orientational contribu-
tion to surface entropy
reaches a value as large
as 2X10-4 J/m2'K at L =

P
10-4 J/m2. But, as evi-

IS·
surface
entropy (Jlrrt"K)

contribution of the

dent from its almost
symmetrical shape about
the ordinate axis, the

pretilt-angle part is at
present negligibly small.

For a free surface
of undeformed nematic,
the surface entropy can
be estimated from the
temperature dependence
of the surface tension

o
-2 -I o

curvature stress L (J/rif)

FIG.4.22. Example of the change of
surface entropy with the applied
curvature stress.
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as in ordinary fluids. According to the measurement due to
Krishnaswamy and Shashidhar[42], the surface tension of HBBA
decreases with temperature by about 1-2X10-4 J/m2 per 1 K in
the nematic phase; so that, the surface entropy is estimated to
be about 1-2X10-4 J/Kom2. This shows that the orientational
deformation can exert significant influence on the interfacial
structure of nematic liquid crystals, if either the easy axis or
the anchoring strength undergoes a spontaneous variation
associated with temperature.

B. Temperature-dependence of the interfacial tension
As already noted, the temperature-induced change of an

interfacial tension is intimately related to the surface entropy.
By using Eq.(4.204) in Eq.(4.197), while keeping fo and ~m (m~2)
fixed, we obtain

Consequently, when normal behavior is assumed, the above equation
is reduced to

(~) =aT fo
(4.208a)

Similar to Eq.(4.204b), when .Dons is fixed instead of fo, we
obtain

(4.208b)

for purely polar or azimuthal anchorage. Therefore, we observe
here again that the contribution of the pretilt angle disappears
in relation to the variation of the interfacial tension. This
result indicates that, concerning the interface of a deformed
nematic, the variation of the interfacial tension with temperature
does not faithfully reflect the surface entropy in the same sense
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that it does in the case of ordinary fluids; it is only related to
the part coming from the variation of the anchoring strength.

Equations (4.208a,b) show that, the contribution of
orientational deformation can be in opposite direction, depending
on the choice of the independent orientational variable. Indeed,
when fo (or ~ns) is fixed during the temperature variation, the
interfacial tension should behave as if the surface entropy were
increased (or decreased) relative to that in the undeformed
state. For an order-of-magnitude estimate, let us assume that de
increases at a rate of about 100 nm/K, which roughly corresponds
to the parameter taken above. Then, Eqs.(4.208a,b) predict that
at fo=103 J/m3 (Lp~10-4 J/m2), the interfacial tension has to
vary at a rate of about 10-4 J/m2'K, which is on the same order as
that for ordinary fluid surfaces. Obviously, at higher
orientational stress, the deformational contribution can be
overwhelmingly large when compared to the temperature-dependence
of the surface tension in the undeformed state. This suggests that
precise measurements of surface tension of nematics, for instance
by means of Wilhelmy plate method, require extra care to take
account of the states of deformation and of anchoring strength
near the point where the tension is actually in action.
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4.9 Alignment transition at nematic interfaces: Thermodynamic
inequalities for critical exponents

The pretilt angle and the anchoring strength are in general
functions of temperature, pressure, and composition. And, in some
instances, they undergo a variation which can be regarded as a
kind of "phase transition." Especially, when the transition is
accompanied by a singularity at a point in the phase space, it is
possible to set forth some thermodynamic criteria for critical
exponents governing the behavior of the pretilt angle and the
anchoring strength around this point. This section is devoted to
formulate such conditions, and to discuss a few recent
experiments on the continuous alignment-transition observed at a
nematic free surface in the light of these results.

4.9.1 Critical behavior of the anchoring strength

We shall first consider the case in which only the anchoring
strength undergoes a critical behavior. Though the criticality
may in principle emerge in connection with any of temperature,
pressure, and/or composition, we restrict the present argument to
the case of temperature, since other cases can be treated in
completely the same manner, resulting in identical conditions.

Imagine that the temperature derivative of the extrapolation
length diverges at a temperature To:

ade-- = 00,aTlimT-+To
(4.209)

At temperatures near To, therefore, the extrapolation length may
be expressed as

(4.210)
with A being a temperature-independent constant, and n
critical exponent satisfying

is the

n < 1. (4.211)
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Consequently, according as n<O or O<n<l, de exhibits two
qualitatively different behaviors as illustrated in Fig.4.23; in
the former case, the anchoring strength becomes infinitely weak at
To, i.e., de-+-ooor Ea-+-O,but in the latter it remains finite .

•"0

FIG.4.23. Two possible cases of the
critical variation of the extrapolation
length. The extrapolation length cannot
assume an infinite gradient as long as
it is finite.
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The basis of our present argument is the formulas for surface
entropy as derived in Section 4.8.2. Introducing Eq.(4.210) into
Eq.(4.206) and collecting only (potentially) singular terms, we
obtain

1SS = S (T) -s n +
L 2
P nA I CTo-T)/To I (n-1)

To
, (4.212)

where SnCT) represents the noncritical part, and the upper and the
lower signs before the second term correspond to T<To and T>To,
respectively. A similar equation can also be derived for the case
of azimuthal anchorage.

Since thermodynamic state functions such as entropy and
internal energy cannot diverge at any finite temperature, one
might conclude from Eq.(4.212) that it is in any case impossible
for the extrapolation length to show a critical behavior as
conceived above. This is indeed true when the extrapolation length
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remains finite even at the critical point, i.e., ~>O. Hence, we
can conclude that de cannot have a diverging slope as long as it
is finite.

However, it is clear that, when the anchoring strength tends
to vanish as the critical point is approached, i.e., ~ <0, the
interface cannot indefinitely support a finite orientational
torque Lp' So, in this case, it is no longer allowed to consider
Lp as a constant independent of temperature. In order to take
account of this point, we have to rewrite the above equation in
term s 0f the strain, .6. ns= ns-ne' as in Eqs.C207c,d) .
Eq.C4.175), Eq.C4.206) can be generally rewritten as

Using

KJfCSe) C 2 a as[Csp + :...§.lL lnfCSe) ]_e
de 2 as aT

2 a K3fCSe)~
2 aT de

C4.213)

Hence, upon substitution of Eq.C4.210), we find

C~<O).
C4.214)

This equation shows that for any "finite" strain, the entropy
should diverge if 0>~>-1. Since it is intuitively evident that
the strain at the surface of tension Csp can be arbitrarily
chosen regardless of the anchoring strength, the requirement of
nondivergence of the left-hand side of Eq.C4.214) results in the
following condition to be satisfied by the critical exponent:

~ s -1. (4.215)

This inequality means that the anchoring strength, when it
exhibits a critical decrease, should behave with a sufficiently
strong sigularity. The behavior of the anchoring energy at this
type of critical point is schematically shown in Fig.4.24.

4 - 111



"w

>-
0>
L-

ei)
C
eI)

0>
C
L..

ox:
o
c
o

To
temperature T

FIG.4.24. Possible singular behaviors
of the anchoring energy at the
critical temperature To'

4.9.2 Critical behavior of the pretllt angle

A. Continuous transition
Next, we consider the case in which the pretilt angle

also experiences a critical variation when the temperature,
pressure, or composition is changed. Here, let us suppose that
the polar angle of ne varies with temperature, exhibiting a
diverging slope at the critical point To [see Fig.4.2Sl.

FIG.4.2S. Two possible cases
the critical behavior of the
pretilt angle.
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Since the pretilt angle is a bounded function, we may now write

(4.216)
with

o < v < 1.

Then, substituting Eq.(4.216) into Eq.(4.213), it follows
immediately that, as long as the anchoring strength remains
finite, the surface entropy is doomed to go to infinity as To is
approached. Because the second and the third terms in Eq.(4.213)
have distinct dependences on esp' they have to separately remain
finite at the critical temperature in order to prevent the surface
entropy from diverging. So, the critical behavior of the pretilt
angle must always be accompanied by the critical weakening of the
anchoring strength. Not to mention, the critical exponent of the
extrapolation length has to satisfy the inequality as envisaged in
Eq. (4.214) . As in Section 4.9.1, this result applies not only to
the temperature-induced rotation of the easy axis but also to
pressure- and composition-induced rotations, and to the azimuthal
angle as well.

As illustrated in Fig.4.25, we may distinguish two cases as
to how the pretilt angle behaves around the critical point: In the
first case (I), the slope, as el aT, diverges on both sides of
the critical point; but, in the second case (II), as el aT shows
a critical divergence on only one of the sides of To, while it
remains finite on the other. Although it is clear from the above
argument that, the anchoring strength has to exhibit a critical
weakening on such a side of To where as el aT diverges, it is
not immediately apparent whether this remains true even when To is
approached along the non-critical side in case II. However, since
it is trivial that two orientational states with a same pretilt
angle but with different anchoring strengths cannot coexist in
equilibrium, we can conclude that the anchoring strength must
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continuously vanish even under such a circumstance. So, once it
is established that the slope of the pretilt angle diverges in one
way or another at some temperature, pressure, and composition, the
anchoring strength should be absolutely critical at this point as
shown in Fig.4.25.

B. Discontinuous transition
So far, we have considered only the case wherein the pretilt

angle undergoes a continuous transition. However, there may also
be an occasion, as observed experimentally [43,44], that the
pretilt angle changes discontinuously as schematically shown in
Fig.4.26. As clear from the above arguments, the thermodynamics
presents no criterion as to the "discontinuous" transition itself,
but it appears to be of some interest here to discuss how such a
transition can be related to continuous ones .

FIG.4.26. Discontinuous transition
of the alignment and the relation
with the anchoring energy. The broken
lines correspond to a metastable
region of the surface alignment,
and the dotted line denotes the
unstable region. At the end point
of the metastable region, the
anchoring strength vanishes.
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Let us imagine that, as the temperature is increased in
complete thermodynamic equilibrium, the easy direction ne jumps
abruptly from the lower branch with ne1 to the upper with ne2 at
a transition temperature Tt. The thermodynamic potentials of upper
and lower branches become identical at this temperature in the
absence of orientational deformation. So that, the corresponding
interfacial tensions, rs1 and rs2' when expressed as functions
of the strain, may be schematically drawn as in Fig.4.27 around

Analogous to liquid-
vapor transitions, each
branch is expected to be
accompanied by a region
of metastable orientation

c
o
IJI
C
Q)

I/Yr.·
Y i To

(broken line in the .~
u
o
't:
Q)
+-
c

n'2
director n,

figure) which terminates
at the temperature where·
the orientation becomes
completely unstable.
Further pursuing this
analogy, we would expect
that the metastable FIG.4.27. Behavior of the interfacial

tension around the discontinuous
transition point of the pretilt angle.regions are connected

with each other via the
region of instability (dotted line), resulting in a sigmoidal
curve as shown in Fig.4.26. Hence, there must be some degree of
super heating and super cooling, which gives rise to a hysteretic
behavior of the easy axis along heating and cooling cycles.

As clear from the figure, the boundary between the metastable
and unstable regions is characterized by the divergence of

in the case of liquid-vapor transition, this point
corresponds to the "spinodal point." Therefore, according to the
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present thermodynamics, which may be valid even in the metastable
region, the anchoring strength has to vanish at this orientational
spinodal point with a critical exponent satisfying Eq.(4.21S).
Now that the pretilt angle changes by a finite amount through the
transition from one branch to the other, there is no reason to
require the anchoring strength to be continuous, in contrast to
the case of continuous transition of the pretilt angle.
Accordingly, the anchoring strength is also expected to show a
hysteretic behavior as illustrated in Fig.4.26.

4.9.3 Phase diagram for surface-induced alignment

As clear from the above arguments, the regions (in the phase
diagram) which are separated by an alignment transition, be it
continuous or discontinuous, are also demarcated by the line
of zero anchoring strength, i.e., de=oo or Ea=O. In the case of an
n-component fluid in two-phase equilibria, the Gibbs phase rule
indicates that the number of the degrees of freedom is n, apart
from the orientational degrees of freedom.
equation

Therefore, the

(4.217)

is to determine a hypersurface in this n-dimensional phase space.

--- --~ - --~-

a..
nematic

Q)

::;
tn
Ul
Q)•..
a.

vapor

FIG.4.28. Alignment phase diagram
for a single component nematic.
Transition of the alignment or the
anchoring strength occurs at isolated
points on the coexistence curve.

temperature T
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In the case of a pure nematic substance, for example, the
nematic-vapor coexistence line may be drawn as in Fig.4.28.
Hence, due to Eq.(4.217), the zero anchoring strength, even if it
might happen, should be in general realized only at isolated
pOints on the coexistence line. Especially, when there are a
couple of orientational spinodal points (B & D), the easy
direction ne becomes a multi-valued function ,in between these
points, and undergoes a discontinuous change at C.

Let us next consider a two-component fluid. Then, Eq.(4.204)
now specifies a line of
zero anchoring strength
in the phase space span-
ned by T, P, and c (the

p

line in question is

concentration of the
second component) as
shown in Fig.4.29. In
the figure depicted is a
situation in which the

separated into several
parts each of which cor-
responds to a different
alignment transition. Fig.4.29. Alignment phase diagram for a

two component system. the alignment
transition occurs along a line on
the equilibrium surface.

This is obviously a fea-
ture which is impossible
to emerge in the case of
a single component fluid. Within the region surrounded by a pair
of orientational spinodal lines, terminating at the intercepts C
and D with the lines of continuous alignment transition,
again a multi-valued function.
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4.9.3 Experimental situation

For such substrates which induce an invariant alignment in
nematics, the temperature-dependence of the anchoring strength has
been so far measured only by a few authors. The substrates
examined include a surfactant-treated glass [45] , a vacuum-
evaporated SiO film [1,46,47], and a rubbed polyvinylalcohol
film. And, especially, in the first two cases, in which the
alignments were homeotropic and planar respectively, the
anchoring strengths were found to exhibit an apparently critical
weakening toward the clearing temperature. The critical
exponents are however between 0 and -1, and hence are
inconsistent
characterizing

with the thermodynamic inequality, Eq.(4.215),
the true critical behavior. This indicates that

the weakening has to terminate at a finite value or to turn into
a more singular one. For more details, see Chapter 7, where the
measurements of the anchoring strength and their results are
fully described.

The control of pretilt angles at a solid-nematic interface is
one of the issues of greatest concern in LCD technology. As a
result, its measurement have been quite extensively carried out in
the last two decades[48]. Although the effects of temperature
and of surface active agents on the pretilt angle on a solid
surface have been examined sporadically, they were mostly
qualitative, and moreover, no correlational study has been done
to elucidate their connection with the anchoring strength.
However, it should be pointed out that some cases are now known
in which the pretilt angle undergoes a nearly critical change or
a discontinuous transition. The results of those studies are
compiled also in Chapter 7 with some thermodynamic discussions.

As far as the present author knows, the only one
investigation which is truly comparable with the thermodynamic
theory formulated in this section is the series of studies
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conducted by Chiarelli, et ale [40,41], who measured the
temperature-induced continuous transition of the pretilt angle
and the concomitant change of the anchoring strength at a free
surface of MBBA. They observed, as reproduced in Fig.4.30, that
there is a critical temperature To (about 1 K below the clearing
point) toward which the polar angle of the director Se tends to

0-••(j) 40 1/2~ e -rt.-r:0> • 0c
0

:: 20..-c»•....
Q.

~ 2

FIG.4.30. Critical behavior of
the pretilt and the anchoring
energy at the free surface of
MBBA observed by Chiarelli et ale
(Ref,40 and 41)
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2

(T(To). And, above To, the
director remains perpendicular to the surface,

measuredhomeotropic
i .e. , the

thealignment. Furthermore,
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they
temperature-dependence of the anchoring strength, showing that the
anchoring energy decreases with temperature toward To with a
linear relationship Ea~A(To-T)/To.

Because as el aT diverges at To, the present thermodynamic
theory requires that the anchoring strength should vanish at To.
This is just what was observed in their experiments. Furthermore,
it should be noted that the linear relationship they found is



consistent with the thermodynamic inequality for the critical
exponent, Eq.(4.21S).

Finally, it should be pointed out that for both pretilt angle
and anchoring strength, no quantitative investigation has ever
been made as to the influence of composition. However, as we have
seen in the last three sub-sections, at an interface of a
multicomponent nematic, even richer variety of orientational
phenomena can be expected to occur than at an interface of a
single component nematic. This appears to be a promising field
open to future investigations.
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Chapter 5

STATISTICAL MECHANICAL THEORIES

In the former chapter, we have made an extensive
thermodynamic argument as to the orientational properties of a
nematic interface subjected to a curvature stress, and have
revised the concepts of the anchoring energy and of the
extrapolation length, which have so far been naively understood
based on the Rapini-Papoular formalism. The purpose of this
chapter is to provide some microscopic bases for the surface-
induced alignment phenomena so as to supplement the argument in
the former chapter from a microscopic view point. Since our
primary interest in this thesis is focused on the phenomenological
description of the nematic interfaces, we will not make any
attempt here to perform detailed statistical mechanical
calculations to quantitatively predict the molecular alignment at
nematic interfaces. Here, we shall be contented with setting a
conceptual bridge between the macroscopic and the microscopic
worlds, leaving such molecular approaches to the literature and
future investigations.

The first two sections of this chapter are devoted to the
development of rigorous statistical mechanical theories for the
interfacial tension and the anchoring strength, respectively.
Though the derivation of an exact formula for fundamental
quantities characterizing the nematic interface is of interest in
its own right, our present aim is, as emphasized above, to figure
out the qualifications that an appropriate phenomenological
description of the nematic interface should have. In the last
four sections, we indeed show that the Landau-de Gennes type
phenomenological theory of the nematic interface as developed by
Sluckin and Poniewierski [1] is just of this kind; it is general
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enough to take care of all the basic properties of a nematic
interface, yet still simple enough to allow for easy treatment.
Within this theoretical framework, we investigate several
orientational phenomena of experimental interest such as (1)
Orientational wetting transition, (2) Contact angle phenomena at

I

nematic-isotropic transition, and (3) Interfacial anchoring. As
we shall show in Chapters 6 and 7, the observations of those
interfacial phenomena provide us with crucial and substantial
information as to the orientational nature of the nematic
interface. The theoretical development in the present chapter
helps us appreciate the basic physics underlying the actual
observations.
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5.1 Statistical mechanical theory of the interfacial tension of
nematics

5.1.1 Theoretical background

The interfacial tension of nematics, both in undeformed and
in deformed states, plays a fundamental role for characterizing
the orientational properties of a nematic interface. Since
Kirkwood and Buff formulated an exact statistical mechanical
expression of the surface tension of simple liquids, there have
appeared quite a few attempts of rigorous formulation of various
interfaces involving not only monatomic but also polyatomic
(molecular) liquids [21. Today, there are essentially two distinct
approaches for deriving exact expressions for the interfacial
tension [2]: one is the thermo-mechanical approach taken by
Kirkwood and Buff [3], and the other is an approach based on the
direct correlation function, due originally to Triezenberg and
Zwanzig [4]. Though these approaches result in apparently
distinct expressions based respectively on the intermolecular
potential and the pair distribution function and on the density
profile and the Ornstein-Zernike direct correlation function, they
have recently been shown (almost rigorously) to be equivalent to
each other [5,61.

Though both of these approaches were originally concerned
with simple liquids (whose constituents have only translational
degrees of freedom), these can be rather straightforwardly
extended to the free surface of a polyatomic liquid, which has
orientational degrees of freedom as well. Gray and Gubbins
[7,8], and Davis[9] have derived a formally exact expression for
the surface tension of molecular liquid in the Kirkwood-Buff form.
The Triezenberg-Zwanzig approach has been extended to the free
surface of molecular liquids by Sluckin [10]. Furthermore,
Navascues and Berry [11] have applied the Kirkwood-Buff theory to

5 - 3



a wall-simple liquid interface, proving an exact formula for the
boundary tension of a simple liquid to be useful in the study of
adsorption at solid surfaces.

As we have seen in the former chapter, the surface of a
nematic liquid crystal can be treated, when the bulk phase is free
from orientational deformation, as if it were no different from
the surface of ordinary molecular liquids. Hence, the exact
formulas as mentioned above are directly applicable to the
calculation of surface and interfacial tensions of nematics.
Parsons [12], Murakami [13], Croxton [14], and Parsons [15] took
this approach based on the Kirkwood-Buff formula, and obtained
(with extensive approximations as to the density profile and the
pair distribution function in the surface region, however) the
surface tension [12-15], the pretilt angle [12,15], and the degree
of orientational order near the interface [14,15].

There are several characteristic interfacial phenomena of
(presumably) orientational origin which those molecular
statistical theories have been aimed to explain: Firstly, it is of
course the occurrence of an easy axis at an interface; secondly,
the small but finite jump of the surface tension of nematics often
observed at the temperature of the nematic to isotropic transition
[16-20]; and, thirdly, the reversal of the temperature dependence
of the surface tension in the vicinity of the nematic-isotropic
transition point [16,17]. The theoretical treatments cited above
are indeed partially successful for explaning these observations.
It should be commented, however, that despite these endeavors, it
is as yet hardly possible to satisfactorily trace back all the
aspects of the actual nematic interfaces to the intermolecular
interactions operating at the interface. Generally speaking, the
degree of success of such a microscopic theory is very difficult
to assess, because of the good deal of approximations often
involved in such theories. Indeed, even when a certain theory
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fails to explain one observation or the other, it is not usually
clear which of the intermolecular interaction employed or the
approximation is inadequate. Even more seriously, the
orientationa1 contribution to the interfacial tension is believed
to occupy only a very small part (10-1-10-5) of the entire
tension of the interface. This is in part making the theoretical
estimate of the orientational contribution extremely difficult.
This situation clearly signifies the importance of a statistical
mechanical route which allows for the construction of a at least
"qualitatively" correct picture of the nematic interface.

In this section, we would like to show up some qualitative
aspects of the interface between a rigid wall and an undeformed
nematic from a statistical mechanical view point. Extending the
theory due to Navascues and Berry [11], we derive a formally exact
expression for the tension of a rigid wall-nematic interface
taking explicit account of the steric repulsion between the wall
and the nematic molecule. On the basis of this exact expression,
we point out that the measurement of the contact angle at the
nematic-isotropic-solid three-phase line of contact (to be
observable at the clearing pOint) is a promising experiment for
extracting information on the anisotropic interaction working at
the interface.

The present formula for the interfacial tension consists of
the contributions from the "direct interaction between the wall
and the nematic" and from the "structural perturbation near the
interface." The latter contribution, in particular, is the factor
which most of the existing molecular theories of the nematic
interface neglect, in spite of the fact that because of the long
range nature of the orientationa1 order in nematics, the
structural variation induced by the solid has considerable
influence on the orientationa1 property of the nematic interface.
As pointed out by Navascues and Berry, this point also indicates
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the inadequacy of the Girifa1co-Good-Fowkes "semi-empirical"
equation, which has sometimes been applied to nematics for
estimating the interfacial tension between a solid and a nematic
from the knowledge of the individual surface tensions of the solid
and the nematic phases. We will emphasize this point through the
consideration of an exact criterion that the interfacial tension
of nematics should obey.

The present exact formula provides a microscopic basis for
the heuristic argument due to Okano [21] who showed that the
anisotropic steric interaction between the wall and the nematic
always favors a planar alignment. And it can also be expected to
serve as a good conceptual background for the mean-field theories
developed by Kimura [22-24], Te10 da Gama [25,26], and Sullivan
[27], which were shown to provide qualitatively good explanation
for the alignment and tension at various nematic interfaces.

5.1.2 Formal expression of the wall-nematic interfacial tension

Let us consider a single component nematic in contact with a
rigid and structureless wall

field. We imagine that the nematic
in the absence of an external z

infinite region z)O

vsurface of the wall, i.e.,
the surface of zero-adsorp-
tion of the solid phase, is
located at z=O, and that the
nematic occupies the semi-

y

[Fig.5.l]. We assume that the
nematic is comprised of lath-
like molecules as shown in
Fig.5.2 whose orientation is

I, •
~----"------- •. .,I

'''solid : .>
: ,.. : 1' •• .:

•..-"'---------- - --'"

FIG.S.l. Geometory of the model.
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fully specified by a unit
vector w. Here, we work with
the Helmholtz free energy F
of a volume V having the area
A parallel to the interface.
We assume that the nematic
molecules are interacting via
pairwise potential

~(ri,wi,rj,wj)= ~ij'
and that the wall exerts a

solid

FIG.S.2. Nematic
molecule in con-
tact with a hard
wall. Due to the
hard core repul-
sion, a molecule
with W cannot
come closer to
the wall than
Z (w) •

potential Vw(z,w) on nematic molecules, which we assume to be
uniform in the plane parallel to the interface. We separate
Vw(z,w) into the long-range attractive part Va(z,w) and the
steric repulsive part which goes to infinity when the molecule and
the wall overlap with each other; namely, for each orientation w,
the center of mass of a molecule can approach up to the distance
Z(w) from the wall surface as shown in Fig.5.2.

Here, we follow the method of Navascues and Berry [11]. Let N
and Ns be the number of molecules of the nematic and of the solid
phases, respectively. Then,
interfacial tension may be written as

according to Eq. (4 • 6) , the

(aF)r --
aA T V N N ., , , s

(5.1)

Because of the assumption of the rigid solid, it is immediately
clear the Eq.(5.1) can also be written as

(5.2)

where Vo is the volume above the zero-adsorption plane of the
solid phase (z=O).

Let Zc be the configurational partition function defined by
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(5.3)

where UT ( r l'W l'.... rN' WN) is the total potential energy of the
system. Here, it should be noted that because of the rigidity of
the solid, it is only necessary to integrate the Gibbs factor over
the coordinate of the molecules in the nematic phase. By writing
the kinetic part of the partition function as Zkin' the Helmholtz
free energy can now be given by

(5.4)

Therefore, using Eq.(5.4) in Eq.(5.1), we obtain

1 (azc)r = -kT - --
Zc aA T V N N ., , , s

(5.5)

The total internal energy can be dividing into the following
three contributions,

(5.6)

corresponding to the solid-solid, solid-nematic, and nematic-
nematic interactions. Due to the assumption of the rigid solid,
the first term is completely determined for given A and Ns. In
terms of the intermolecular and the wall-nematic potentials, we
may further write

and

Denoting
can be

xUsn+Unn by UT '
decoupled into

the configurational partition function
the part coming from the solid-solid

interaction and that from the rest of the

Zc = exp[-Uss/kT1· ~!f {drdw} exp[-

internal energy UTx:

(5.8)
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Consequently,
interfacial

using Eq.(5.8) in Eq.(5.5), we see that the
tension can also be split into individual

contributions to give

*r = rS + r , (5.9)
where

r S = -kT 1 (~s\
Zss aA ) T V N, , s

-(~\
aA ) TN', s

(5.10)

1 az*
r" = -kT ,,(-)

Z aA T V N •, 0, s
(5.11)

*rS and r are, respectively, the surface tension of the solid
phase and the boundary tension of the nematic phase with respect
to the dividing surface located at the point of zero-adsorption of
the solid phase [see Section 4.4.3].

The calculation of
*r can be readily fa-

cilitated by means of a
modified Green's method
[28]. Let Lx' Ly, and
Lz be the lengths of the
nematic volume in ques-
tion along X-, y-, and

Va =const.

z

,-------- - - • T"

z-axes, respectively

y

[see Fig.5.3]; i .e. ,

FIG.5.3. Variation of
the interface area at
constant volume.

Green's method consists in the change of integration
variables in such a way that the volume change can be entirely
cast into the change in interaction potentials:

x'=x/L ,x (5.12)

and, here, in order to take explicit account of the hard-core
interaction between the wall and the nematic, we especially define
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z'=[z - Z(W)]![Lz - Z(w)], (5.13)

for each molecular orientation W. The Jacobian associated with
this scaling transformation of linear dimension is not simply the
volume Vo as in the original Green's method, but is given by

J({W})

(5.14)

Thus, in terms of the new variables, the partition function Z* can
be written as

(5.15)
in which the range of integration on z' has been restricted beyond
z'=O in view of the hard-core repulsion between the wall and the
nematic, and hence the full singlet potential Vw due to the wall
has been replaced by its attractive part Va.

In order to calculate r*, we chose to differentiate Z* by Ly
at fixed Vo and N; note here that, since the interfacial tension
is now defined as a surface-excess thermodynamic potential per
unit area [Eq.(4.11)], it should not in equilibrium depend on the
manner in which the interface is expanded; further, it must be
strictly discerned from the surface stress [29].

The Ly-derivative of Z* consists of two terms resulting from
the derivative of the Jacobian and that of the Gibbs factor. For
example, since the Jacobian is differentiated at constant volume
to give

- (1 fLy) J ( {w} ) {~
1

}, (5.16)
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it is readily confirmed on account of Eqs.(s.ll) and (5.15) that
this term gives rise to a contribution to the interfacial tension
as

)I{ kT f Z(w)
r (J) = - drdw

A v ; Lz - Z (w)
p(r,W), (5.17)

after transforming back to the original variables, where p ( r ,w)
is the density of a molecule with the orientation W at the point
r. In much the same manner, we get the part which comes from the
derivatives of the Gibbs factor:

av (z,w)Z(W) a p(r,w),az
(5.18)

where P2( r1,w1, r2,(2) is the pair distribution function, and
Y12 and z12 denote Yl-Y2 and zl-z2' respectively. Furthermore,
upon using the first member of the Yvon-Born-Green hierarchy [2],

kT

which rigorously holds for zl>Z(W1) at present. The last two
terms of Eq.(s.18) can be transformed, in combination with

5 - 11



Eq.(S.17), to a surface term, and we finally obtain

f aVa(Z'W)- dzdw z p(z,w)az
+ kT fdW Z(w)p[Z(w)+O,w].

Here, we have used the fact that p(r,w)=p(z,w).

This offers an exact statistical mechanical expression for

(S.19)

the boundary tension at a rigid solid-nematic liquid crystal
interface. This is a generalization of the result of Navascues and

litBerry [11] to a polyatomic liquid interface. We see that r is
comprised of two qualitatively distinct contributions rllt(l) and

litr (2) which represent, respectively, the part of the interaction
among nematic molecules and that of the direct interaction between
the solid and the nematic:

lit lit litr = r (1) + r (2), (S.20)

where rllt(l) stands for the first term in Eq.(S.19), and r*(2)

the remaining two terms. Note that in the absence of the solid
wall, Eq.(S.19) reduces to the exact formulas derived by Gray and
Gubbins [7,8], and Davis [9] for molecular liquid surfaces, which
also applies to a free surface of a nematic liquid and to a
nematic-isotropic interface. Finally, it is of interest to point
out that the last term of the above represents the contribution of
the hard-core interaction between the rigid wall and the nematic,
and as such, it provides a formal proof for the result due to
Okano [21]. Namely, the last term in Eq.(S.19) tends to orient
nematic molecules parallel to the interface so as to increase the
packing entropy. Evidently, this is one of many factors which
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may influence the alignment at the interface, and the true
orientation should be determined via the competition among the
various contributions existing in Eq.(5.19).

A. Separation into isotropic and anisotropic contributions:
Contact angle at the nematic-isotropic-solid three-phase line of
contact [18-20]

Concerning the orientational property of a nematic interface,
the point of primary interest is the anisotropic part of the
interfacial tension. And, it is indeed the aim of experiments to
extract that part from various observations of a nematic
interface.

In order to gain some insight from the present exact formula
into this point, it is convenient to separate the density into the
isotropic and the anisotropic part:

p(z,W) = <P(z'W»w + Pa(z,w)
:: Po(z) + Pa(z,w),

(5.21)

P2(r1,w1,r2,w2) = <P2(r1,w1,r2,w2»w1,w2

+ P 2a( r i- w i - r 2'w 2),
(5.22)

where <) w denotes an unwei ghted average over w, and P a (z,w)
represents the anisotropic part of the density which vanishes when
averaged over the molecular orientation. In terms of the radial
distribution function g(r1,w1, r2,(2), the pair distribution
function can be written as

Then, we can also make a division of the pair distribution
function as follows:
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P2( r1,w1, r2,(2) = Po(zl)Po(z2)(g( r1,w1, r2,(2»W1,W2
+ P2a(r1,w1,r2,w2),

(5.23)
where the last term is the collection of all the anisotropic
terms.

Corresponding to these distinctions between the isotropic and
the anisotropic parts, the interfacial tension is also seen to be
divided into the respective parts:

(5.24)

and hence, by adding rs to both sides, we have

(5.25)

where *'ra is the anisotropic part which comes from Pa and P2a.
As clear from the course of derivation, riso is the interfacial
tension between the solid and a reference "simple" liquid in which
the orientation dependence of the nematic phase is smeared out.
Obviously, the anisotropic part of the nematic-nematic and the

*'wall-nematic interactions contributes only to ra.
According to the generalized van der Waals theory of nematic

interfaces due to Telo da Gama [25,261, the interfacial tension
between a nematic and a vapor, and even that between a nematic and
its isotropic liquid are primarily dominated by the change of
(orientation-averaged) density across the interface; it should be
pointed out, however, that Sluckin [11 argued that the dominance
of the density change at the nematic-isotropic interface is an
artifact of the model of Telo da Gama. Anyway, unless the
interfacial tension is extremely small as in the case of nematic-
isotropic interface, we can conceive that riso is the main
contribution to the total interfacial tension.
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Let us now consider the
contact angle of a drop of a
nematic liquid crystal placed
on a solid surface [Fig.5.41. vapor
On negligence of a small
effect due to gas adsorption
on the solid surface, we see
from Young's equation that
the contact angle of
nematic 8 should satisfy

the FIG.S.4. Contact angle of a nematic
drop at a solid-vapor interface.

r S = r sn + r nvcos 8 , (5.26)

where r sn is the solid-nematic interfacial tension, i.e, r in
the present notation. So that, according to Eqs.(5.23) and
(5.24), we find

* * *- r / r vn = - (r iso + r a)/r vn = cos 8 . (5.27)

*Therefore, except for an accidental case in which riso becomes as
small as r:, the anisotropic contribution to the contact angle is
obscured by the isotropic contribution.

Next we consider a contact angle of a nematic droplet in a
bit different setting as
shown in Fig.5.5. Here, the
nematic drop is placed at the
interface between its own isotropic

isotropic liquid, which is
coexisting with the nematic
phase at the transition tem-
prature, and a solid wall.

angle a gives a direct mea-
*sure of r a.

-~---

FIG.S.S Contact angle of a nematic
drop at a solid-isotropic interface

We can show that the contact
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Since the density of a nematic liquid crystal changes only
less than one percent across the nematic-isotropic transition, it
is expected to be a good approximation, at least near the clearing
temperature, to assume that <p(z,w»w and
<g( rl'Wl' r2,W2»W1,W2 is
isotropic transition. Under

invariant
this

across the nematic-
condition, the relevant

interfacial tensions can be written as
'I<

rsn= riso+ ran' (5.28)

(5.29)
'I< 'I<where ran and rai are the anisotropic parts of the solid-liquid

interfacial tension when the liquid is in the nematic and the
isotropic states at Tc' respectively. Using Eqs.(5.28) and (5.29)
in the relevant Young's equation, we obtain

'I< 'I<
r ai - ran

r ni
= cos a . (5.30)

This equation clearly shows that the contact angle of the nematic
liquid at the nematic-isotropic-solid three-phase line of contact
at the temperature of nematic-isotropic coexistence is determined
only by the anisotropic part of the interfacial tension and the
tension of the nematic-isotropic interface. So, in contrast to
the ordinary contact angles at a solid-vapor interface, the
contact angle a is expected to provide direct information on the
anisotropic nature of the solid-nematic interface.

Extensive measurements [18-20] of this type of contact angle
at various solid-nematic systems will be described in Chapter 7.
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5.1.3 Fundamental properties of the tension of a solid wall-
undeformed nematic interface

A. Work of adhesion and related problems
The work of adhesion between a solid and a nematic liquid can

be defined in the same manner as for an ordinary liquid-solid
system. Let us imagine that, initially the solid and the nematic
liquid are separated by a large distance, being in equilibrium
with their vapor phase, and then are reversibly put into contact
with each other to form a planar interface [Fig.5.61.
work of adhesion is defined as the amount of work

Now the
which the

system can perform to the environment during this process.
Obviously, it can be equivalently defined as the work needed to
reversibly separate the solid and the nematic liquid to infinite
distance.

// nematic / ~
/1/111/11,

-- nematic --- . vapor '.

FIG.5.6. Defining process of the work of adhesion between
a solid and a nematic liquid crystal.

Let us denote the tensions of the solid-nematic, solid-vapor,
and nematic-vapor interfaces by r sn: r sv' and r nv'
respectively. Then, by definition, the work of adhesion Wa can be
written as

Wa = r vn + T sv - T sn .
,
(5.31)
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By substracting the surface tension of the solid rS from rsv and
from rsn' Eq.(5.31) can be rewritten in the form,

* *Wa = r vn + r sv - r sn ' (5.32)

where the asterisk on the last two terms denotes the boundary
tension defined in the former section.

Navascues and Berry [11] devised a convenient way to clearly
show up the underlying physics of Eq.(5.32). The procedure of
separation of the nematic and the solid as depicted in Fig.5.6 can
be regarded as a sequence of two stages [see Fig.5.7] as follows:
In the first stage, the nematic liquid is removed from the solid
without changing the density profile, i.e. a mere translation of
p(z,W); and in the second, the nematic is relaxed to its
equilibrium nematic-vapor density profile. Let us denote the

I. 2. 3.

nematic

o
fI)

'No( I)
FIG.S.7. Two stages of separation between a nematic and a
solid wall. From 1 to 2, the interfacial structure of the
liquid is fixed, and from 2 to 3, it is allowed to relax.

amount of work associated with these two processes by Wa(2) and
Wa(l), then we readily find from Eqs.(5.19) and (5.20) that

(5.33)
where

*= - r (2), (5.34)

*Wa (1) = r nv - r (1). (5.35)

Here, * *we have neglected rsv in comparison with rsn ' because
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the density in the vapor phase is much smaller than that in the
lienematic phase near its triple point; as shown in Eq.(5.19), r is

at least linear in the density in the medium in contact with the
solid.

Equation (5.33) shows that the work of adhesion between a
solid and a nematic consists of the (solid-nematic) interaction
term Wa(2) and the relaxation term Wa(l). In contrast to the
simple liquid treated by Navascues and Berry [11], the relaxation
term of a polyatomic liquid involves the contribution from the
relaxation of the orientational structure in the interfacial
region. In particular, since the nematic liquid crystal has a
long range orientational order, such an orientational relaxation
will not be localized within a few molecules distance from the
interface, as is often the case for oscillating density profile
found at a wall-simple liquid interface, but will extend over a
range on the order of the coherence length of the nematic order.
This situation is shown in Fig.5.S in relation to the two stages
of separation as already conceived.

I. 2. 3.

nematic

o
(I)

FIG.5.B. Changes of the order parameter profile near the
interface associated with the two stages of separation.
Here, the order parameter changes over the length of the
order of coherence length ~c' which is much larger than
the atomic dimension a.
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The importance of this long-ranged orientational structure
near the interface is indeed one of the most striking factors of
the nematic interface, which is deeply reflected in its various
macroscopic properties such as those listed at the beginning of
this section. We will present some more examples of relevant
experimental observations in Chapters 6 and 7.

1. Girifalco-Good-Fowkes theory of the work of adhesion
In the light of the present theory, we would like to briefly

review the conventional theories of the work of adhesion, which
have been applied to the problem of the surface-induced alignment.

The theory due to Girifalco and Good [30,31] and its second
version extended by Fowkes [32] are the best-known and the most
frequently used theory of the solid-liquid interfacial tension.
Their theory rests on the direct calculation of the force acting
between a solid and a liquid media on an assumption that the
arrangement of molecules in these phases are invariant regardless
of the separation between them. In analogy with the Berthelot
relation between unlike molecules, they have write down the work
of adhesion between two media, a and b, in terms of the surface
tensions of a and b:

(5.36)

and hence the interfacial tension rab as

(5.37)

And, by direct calculation of the force between them, ~ is
expressed in terms of the molar volume of consituents, Va and Vb'
as follows:

(5.38)

And they showed that for most organic liquids, ~ is something
around unity. Furthermore, Fowkes considered the contributions of
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the various intermolecular interactions, i. e. polar (p) ,

dispersion (d), hydrogen-bonding (h), etc., to be independent, and
expressed the interfacial tension as a sum of each contritubion:

r = r(p) + red) + r(h)+ ... (5.39)

And, he applied Eq.(5.37) with ~=1 to each component of the
interfacial tension.

In spite of this clearly very crude nature of the theory, it
is now widely accepted that the formula reproduces the interfacial
tension fairly well in a wide range of materials. However, it
should be strictly emphasized that, the theory is not at all
rigorous, but is intended to provide an empirical formula for the
interfacial tension which is not readily measurable. As they
themselves admitted [30], the formula may involve an error as
large as a few 10-3 J/m2, and thus it can be regarded as a good
one if and only if an error of this level is permissible.

The orientational part of the interfacial tension r: is, if
it can be identified with the anchoring energies, in reality less
than 10-3 J/m2• It seems to shed considerable doubt on the
applicability of this theory to the surface-alignment of liquid
crystals unless it is subjected to close scrutiny.

As pointed out by Navascues and Berry, the source of error in
the Girifalco-Good-Fowkes theory is hard to assess from a rigorous
statistical mechanical point of view. However, the apparent
drawback of their theory is the neglect of the possible structural
relaxations near the interface. In an attempt to calculate the
alignment and anchoring energy at a solid-nematic interface,
Mada [33], Okano and Murakami [34], Bernasconi, et al.[35], and
Okano, et al. [36] have employed a similar approach to calculate
the interfacial tension between a nematic and a solid based on the
Lifshitz theory of van der Waals force. They assumed the
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structure of those media are everywhere bulklike, and compared the
interaction free energies when the nematic director is parallel or
perpendicular to the interface. In this respect, their theories
are essentially identical with the Girifalco-Good-Fowkes theory,
thereby suffering from the same pitfall as the latter. Below we
present one example which clearly demonstrates the importance of
a structural consideration so as to reach a correct picture of the
nematic interface.

B. Rigorous criteria for the interfacial tension of nematics

Let us consider a nematic interface at the temperature of
nematic-isotropic transition. And, we address a question how large
a discontinuity the interfacial tension can experience as the bulk
phase transforms from one phase to the other.

Since the interfacial tension for a planar interface is an
excess thermodynamic potential per unit area, it must assume the
minimum value in equilibrium at constant temperature and chemical
potential. It can therefore be shown that the absolute difference
between rn and ri' which are respectively the interfacial
tensions when the bulk phase is in the nematic and the isotropic
phases, is bounded by the nematic-isotropic interfacial tension:

r n - r i I ~ r ni . (5.40)

This inequality follows immediately from the consideration of the
situation as shown in Fig.5.9.

z z

FIG.5.9. Schematic
proof of the inequality.
By placing a macrosco-
pic layer of the iso-
tropic liquid between
the substrate and the
nematic phase, the
reulting interfacial
tension must be larger
than the equilibrium
value.

nematic nematic

- --
isotropic

( I) equliibrium (2) nonequilibrium
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For example, when it happens that

we can reduce the interfacial tension ri' at worst, to rn+rni
by placing a macroscopic layer of the nematic liquid in between
the wall or vapor and the isotropic bulk phase. However, since the
real system can do even better, we must always have

r i So r n + r ni . (5.42)

By exchanging the role of the nematic and the isotropic phases, we
can similarly obtain

(5.43)

It completes the proof of the desired inequality. This is a
rigorous criterion, first explicitly pointed out by Telo da Gama
[25], which a nematic interface should obey at the nematic-
isotropic transition temperature. As clear from this heuristic
argument, when the equality holds, we expect that the nematic or
the isotropic liquid completely wets the interface intruding in
between the two phases in contact. This condition is often
violated in mean-field calculations in which the
relaxation near the nematic interface is neglected.

structure
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5.2 Density functional theory of the anchoring strength

So far in this chapter, we have considered only a nematic
interface in the absence of bulk orientational deformations. This
section is devoted to a theoretical study of how a bounded nematic
behaves under an externally applied curvature stress, with a view
to formulating a statistical mechanical expression for the
anchoring strength. For the sake of brevity, we shall restrict
our attention to a nematic in contact with a rigid and
structureless wall, which can be expected to serve as a good model
of a real solid-nematic interface.

5.2.1 Introduction

As we have already shown in Chapter 4, the anchoring strength
at a nematic interface is a kind of surface-specific elastic
constant which describes the response of the interface to a
curvature stress existing in the bulk nematic [see section 4.7.3].
Recently, several rigorous statistical mechanical theories have
been developed for the bulk elastic constants of condensed media
including liquid crystals [37-42]. In comparison with the
classical molecular theories of curvature elasticity [43-48],
those theories share distinctive characteristics in common.
Namely, the microscopic structure of the matter plays the primary
role, while the molecular interaction between constituent
particles are implicitly taken into account through the structure.
By virtue of this property, the elastic constants, which are
always defined in relation to structural perturbations, can be
rigorously expressed in terms of structural correlation functions.
In view of the "fluctuation-dissipation theorem," it appears quite
natural that such structural approaches have been far more
successful than conventional interaction-based approaches.

The density functional theory [2], on which those structure-
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oriented theories are invariably based, was originally developed
as a tool to treat interacting electron gas. Later, however, it
has proved to be remarkably useful in the study of inhomogeneous
liquids. It offers a general and systematic way to treat the
statistical mechanical aspects of structural problems. In this
section, we apply the density functional theory to the interface
involving an orientationally deformed nematic, and on the basis of
the thermodynamic definition of the anchoring strength as given in
the former chapter, we develop a formally exact structure-based
expression for the extrapolation length. Furthermore, by
discriminating
extrapolation

the "energetistic" and the "geometrical"
lengths, which coincide with each other in

equilibrium, we prove a simple variational property that these
extrapolation lengths to obey. And, by using a simple trial
function, we show that the extrapolation length consists of two
distinct contributions which respectively allow interpretations
as coming from the interaction between the wall and the nematic
and from the interfacial anomaly of the Frank elastic constants.
Finally, we will shortly discuss the problem concerning the second
order elasticity.

5.2.2 Density functional theory

Here, we summarize some fundamental concepts and formulas of
the density functional theory [2,10] so as to aid the
understanding of later arguments.

We consider a single component liquid comprised of rod like
molecules in the volume V under an external potential Vext' We
assume that the molecule is rigid so that its position can be
specified by r and the orientation by a unit vector w along the
long axis of the molecule. We consider a grand canonical ensem-
ble at temperature T and chemical potential #; then the equilib-
rium probability density f for N molecules can be written as
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-1fo = a exp[-(HN - JlN)/kT], (5.44)

where k is the Boltzmann constant, and HN the Hamiltonian for N
molecules given by

N N
HN = L Ti + U (r 1'W l'....rN' W N ) +. L Vext(r i'Wi) ,i=l 1=1

with Ti being the kinetic energy of the i-th molecule and U being
the potential energy due to intermolecular interactions. And, a
represents the grand partition function, which is connected with
the grand thermodynamic potential Q via

Q = - (1 /kT) In a (5.45)

The equilibrium density Po( r, w) is given as an ensemble average
A

of the density operator p(r,W)=LO(r-ri)o(w-wi):
A

po(r,w) = <p(r,W», (5.46)

where <> denotes the ensemble average.
It is clear from the above equations that, once the external

potential Vext is given, the probability density £0 and hence
p ( r, w) are determined at every temperature and chemical
potential. Furthermore, it is possible to prove that the converse
is also true, namely that for an arbitrary p( r,w), there exists
a unique external potential which gives rise, in equilibrium, to
the density in question [2]. Thus, it becomes possible to
conceive £0 as a functional of p ( r ,w) . Consequently, we can
define the key quantity in the density functional theory, the
"intrinsic" Helmholtz free energy Fin[P], as a functional of the
density by

= <LT. + U + kTlnfo>
1

(5.47)

where Tr is the trace operator performing the configurational
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average in the phase space. The other important quantity is the
grand thermodynamic potential (also a functional of p) which is
defined by

Q [ p] = f d r dw P ( r , w ) Vext + Fin [p] - uf d r dw P ( r , w ) •

(5.48)
It is readily confirmed that at the equilibrium density Po, the
above functional correctly gives the equilibrium thermodynamic
potential. It is also shown that the equilibrium thermodynamic
potential is the minimum value of the Q[p]:

Q[po] < ct e i. (5.49)

This condition is essentially equivalent to the
thermodynamic inequality Eq.(4.186) specifying the criterion of
equilibrium. Hence by taking the functional derivative of
Eq.(5.48), we get

o = V ext ( r , w) + Jl in[Po; r , co l - u , (5.50)

where Jlin is the intrinsic chemical potential defined by

(5.51)

Let 4I[P]=Fid[P]-Fin[P], where Fid[P] is the Helmholtz
free energy of the ideal gas as given by

(5.52)

where A3=Zkin is the kinetic part of the partition function due
to rotational as well as translational motions of the molecule.
As obvious, 4I[p] represents the contribution from the
intermolecular interaction.

The hierarchy of correlation functions can be generated by
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successive functional differentiation of ~[pl as follows:

C[p; r, w 1= (l/kT)-----op(r,w),
s ~ [p 1

(5.53)

= (l/kT)--------------------
o p ( r 2' w 2) 0 p ( r l' w 1)

=

(5.54)
and so on.

On using Eq.(5.53) in Eq.(5.50), the equilibrium density is
expressed as
Po( r,w) = A -3exp(tt/kT)exP{-Vext( r,w)/kT+c[po; r,wl}.

(5.55)
so that, -kTc[po; r,wl gives the additional, effective one-body
potential
density.

which self-consistently determines the
The second member of the correlation

equilibrium
functions,

e l Po; r i -w1' r2' w2], is referred to as the Ornstein-Zernike
direct correlation function, which satisfies the well-known
Ornstein-Zernike equation in combination
density-density correlation function.

Finally, we would like to note the following identity, which

with the two-body

derives readily from the definitions of the direct correlations
functions. Imagine that the density is continuously changed from
that of some reference fluid, Pre r,w), according to

(5.56)

in which a changes from 0 to 1. Then, starting from the obvious
identity,

4> [ p I = 4> [ p r I + f: lH>[ Pill/ail da • (5.57)

we readily obtain
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<I>[p] = <I>[Pr] + kT fdrdW[P(r,W)-Pr(r,W)] c[Pr;r,w]

+ kTf~af~a'fd'ldW1fd'2dW2a[p( 'l'W1l-Pr( 'l,w1l]

X[p( r2,(2)-Pr( r2,(2)] c[Paa'; rl,wl' r2,w21.
(5.58)

5.2.3 Statistical expression for the extrapolation length

A. Grand thermodynamic potential in an orientationally deformed
state

Let us consider the equilibria of a semi-infinite nematic
liquid crystal bounded by a rigid and structureless wall, and take
the rectangular coordinate with its origin at the point of zero-
adsorption of the wall as shown in Fig.5.l0. As in Section 5.1,
the rigidity of the wall allows us to disregard the wall
variables, and to assume that its effect is only to produce an
external potential Vw(z,w) acting on the nematic. We imagine
that the nematic and the wall are both uniform in the plane
parallel to the wall surface (x-y plane).
thermodynamic definition of
the anchoring strength,
Eq.(4.179b), we need first to
calculate the grand thermody-
namic potential in the pre-
sence of a curvature stress.
Here, we conceive that the
director deformation is
brought about by an orienta-
tional force applied a point
well inside the bulk nematic,
and in conformity with the
thermodynamics, we only con-

nematic

In order to apply the

:'::::",:':'

solid

z

ez»
~-~=~~~=""""'m--+-O

FIG.S.IO. Rigid solid-nematic interface
under a curvature stress.
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sider the region where such an artificial field is absent, so that
the nematic can be regarded as being deformed only elastically.

In the bulk nematic, the macroscopic alignment of the nematic
should obey the Frank theory of elasticity as long as the
deviation from the uniform orientation is of sufficiently long
wave-length. Thus, as discussed in Section 4.4.1, the state of
the system must be completely specified by the elastic energy
density fd, which is uniform in the bulk nematic, and the variable
P indicating the mode of deformation. Once fd and P are given,
therefore, the density is uniquely given at any point in the
nematic in question as P(fd,p;r,w). By denoting the density
in the absence of bulk orientational deformation as Po( r,w), we
define

(5.59)

Expansion of Q in powers of S P can be readily carried out
by way of Eq.(5.58). If we regard Po as the reference density,
then, up to second order in S P, we can set

in Eq.(5.58). Furthermore, because Q should be minimum at Po,

there appears no term linear in S p •

Eqs.(5.48), (5.52), and (5.58), we get
Hence, by making use of

c t o i = Q[po] + (kT/2)fdr1dW1dr2dW2SP(fd,p;r1,W1)

XSP(fd,P; r2,(2) C2[Po; r1,w1, r2,w2],
(5.60)

where

(5.61)
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B. Frank elastic energy and the statistical mechanical
formulation of elastic constants

In order to obtain the expression of the interfacial tension,
it is necessary to identify the part which approaches the Frank
elastic energy density fd as z goes to infinity.
purpose, we utilize the following identity:

For this

op(r1,w1)op(r2,w2) =

1-[op(rl'w1)op(r1,w2) + op(r2,w1)op(r2,w2)]2
1

+ -[op(r1,w1)op(r2,w2) - op(r1,w2)op(r2,w1)]2
1

+ -[op(r1,w1) - op(r2,w1)][op(r2,w2) - op(r1,w2)],2 (5.62)
where the dependence on fd and ~ is not written explicitly for
the sake of simplicity. Substituting Eq.(5.62) into Eq.(5.60),
we obtain

Q[p] = Q[po]

+ (kT12) f d r 1dw 1d r 2dW 20 p ( r l'w 1)0 p ( r l'w 2)
XC2[Po; r1,w1, r2,w2]

- (kT/4)fdr1dW1dr2dW20P( r1,(1)oP( r2,(2)
X{c[Po; r1,w1, r2,w2] - c[Po; r2,w1, r1,w2]}

+ (kT/4)fdr1dWldr2dW2[Op(r1,W1) - op(r2,w1)]

X[op(r1,w2) - op(r2,w2)] c[po;r1,w1,r2,w2],

(5.63)
where use has been made of the symmetry property of the Ornstein-
Zernike direct correlation function, Eq.(5.54).

It follows from Eq.(5.63) that the thermodynamic potential
can be rewritten in the form,
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O[p] = O[Po] + f fer) a r • (5.64)

(5.65)

where

fl(r) = (kT/2)fdUdWIdW20p(r,WI)Op(r,W2)

XC2[ Po; r, wI' r+u, W2],

f2Cr) = - (kT/4)fdUdWIdW20p(r,Wl)Op(r+U,W2)

X{c[Po; r,w1, r+u,w2] - c l o s; r+u,wl, r,w2]},

f3(r) = (kT/4)fdUdWldW2[OPCr,Wl) - op(r+u,w1)]

X[op(r,w2) - op(r+u,w2)] c[po;r,w1,r+u,w21.

In the uniformly oriented bulk nematic, it follows from the
translational and rotational symmetry of the nematic phase [49]
that

(5.66)

so that, f2( r) should disappear as z-+oo. Furthermore, in case
the nematic is subjected only to an infinitesimal curvature stress
under constant temperature and chemical potential, the density can
be written, upon negligence of terms on the order of fd, in the
following form [cf. Eq.(4.93)]:

p(r,W) = po(n·w), (5.67)

where n represents the local "director" at r. Consequently,
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o P reduces t.o

(5.68)

where t.he prime over Po denot.es t.he different.iat.ion wit.h respect.
t.o n· w. Hence, in t.he bulk nemat.ic, f1(z) can be regarded, t.o
first. order in fd, as an ext.ra energy needed t.o homogeneously
rot.at.e t.he orient.at.ionof a nemat.ic by 0 n. As well known, a
uniform rot.at.ionof t.he direct.or is a Goldst.one mode [50] in t.he
nemat.ic phase, namely a mode which does not. require any ext.ernal
work for it.s excit.at.ion; hence, f1(r) is also seen t.ovanish in
t.he bulk phase. Therefore, f1( r) and f2( r) are non-zero only in
t.he vicinit.y of t.he nemat.ic-wall int.erface, due respect.ively t.o
t.he break down of t.heGoldst.one degeneracy and of t.he inversion
symmet.ry.

As a result. of t.he above propert.y, we are left. only wit.h
f3( r) in an infinit.esimally deformed bulk nemat.ic; t.hus it.should
be ident.ified wit.h t.heFrank elast.ic energy densit.y. Here, we show
t.hat. a rigorous expression for t.he Frank elast.ic const.ant.s
immediat.ely follows from t.he present. formalism in complet.e
agreement. wit.h t.he result. due t.oPoniewierski and St.ecki based on
t.he rat.her complicat.ed st.ar-int.egral approach. For a direct.or
configurat.ion which is spat.ially slowly varying about. t.he easy
direct.ion ne, we obt.ain from Eq.(5.68),

dn· w
dz

(5.69)
where we have used t.he fact. t.hat.t.he densit.y is one-dimensionally
varying only along t.he z-axis, i.e., p ( r, w )=p (z,o ) .

Using Eqs.(5.68) and (5.69), f3( r) can be expressed in t.he
form,

1 dn. dn.= - K .. ~ _J
2 lJdz dz' (5.70)
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where

Kij = (kT/2)fdUdWldW2 uz2p.;,(ne·Wl)P.;,(ne·W2)
XWliW2j c[Po;U,wl,O,W2]

(5.71)

When n-n holds, dn/dz can be approximately written ase

de d<l>
n + sine na,p e dz (5.72)

dz dz

where e and <I> are the spherical polar angles of n, and np and
na are the unit vectors
perpendicular to ne as shown
in Fig.5.ll; in Section 4.6,
they have been referred to as
the polar and the azimuthal
vectors, respectively.
troducing Eq.(5.72)
Eq.(5.70), we find

In-
into

-

FIG.S.II. Definition of the unit vectors.

(5.73)
where the cross term has been eliminated due to the reflection
symmetry in the uniform nematic about the plane including nee In
order that this equation becomes identical with the Frank elastic
energy density in an infinitesimal deformation, cf. Eq.(4.63), it
is necessary and sufficient that

Kijnpinpj = K sin2e + K cos2e1 e 3 e
and

K sin2e 2 (5.74)
Kijnainaj = + K3cOS e e'2 e

where summations over the subscripts i and j are of course
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implied.
As shown in Fig.5.ll, U can be decomposed as

and hence we get

(5.75)

Substituting Eq.(S.7S) into Eq.(S.74) by way of Eq.(S.7l) and
comparing
obtain

K 1 = ( kT/2)f dUd W 1dW 2 up2P b(n e •W 1)P b(n e • W 2)
XWlpW2p c[Po;U,wl,O,w2],

the coefficients of cos2ee and we finally

K2 = (kT/2)fdUdWldW2 up2pb(ne·Wl)Pb(ne·W2)
X W law 2a c[Po; U, W 1' 0,W 2],

K3 = (kT/2)fdUdWldW2 ue2pb(ne·Wl)Pb(ne·W2)
X W 1pW 2p c[Po; U, W 1,0,W 2],

= (kT/2)fdUdWldW2 ue2pb(ne·Wl)Pb(ne·W2)
XW1aW2a c[Po;U,w1,O,w2],

(5.76)
where Wp and wa denote w· np and w· na, respectively; the
term involving ueup disappears on symmetry ground. These
equations offer the exact statistical mechanical expressions for
the Frank elastic constants, in complete agreement with the
results given by Poniewierski and Stecki [37].
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5.2.4 The extrapolation length

We can now derive the statistical mechanical expression for
the anchoring strength at the rigid-wall nematic interface on the
basis of the thermodynamic thermodynamic definition of the
anchoring strength Eq.(4.179b). As regards a planar interface
between a rigid wall and a single component nematic, the
definition can be readily translated to give

(5.77)

where de is the extrapolation length, which in the present
geometry is given by

de = zd - zex· (5.78)

Here, r* is the "boundary tension" with respect to the dividing
surface located at zd' and zex represents the point of
extrapolation.

As noted in Section 4.4.3, the boundary tension for the
interface of an orientationally deformed nematic must be written
as

*r = (0 - 0 )/Aa (5.79)

where 0a is the thermodynamic potential for the hypothetical
volume of the nematic which is assumed to be completely bulklike
right up to the dividing surface, i.e.,

o = 00 + Vf d. (5.80)

Here, 00 is the thermodynamic potential of the hypothetical
volume in the absence of an orientational deformation.

In order to apply the above equations to the density
functional formulas derived in the previous section, it is
suff icient to recall the fact that as Z-+OO, f( r ), as def ined in

5 - 36



Eq.(S.6S), approaches the Frank elastic energy density fd. Thus,
it is immediately clear that the boundary tension can be written
as

'I< A1 f s r= r 0 + - (5.81)

where 'I<ro denotes the boundary tension in the absence of
deformation. On using the fact that f1(r) and f2(vR) are
localized near the interface, Eq.(5.81) can be further
transformed to

'I< A1 fr » = ro + - (5.82)

Now it is a straightforward task to derive the desired
expression, by substituting Eq.(5.82) into Eq.(5.77). In order
to make the resulting equation compact, let us introduce a
position-dependent dens ity response function 1/(z,w ) to a
curvature stress applied in the bulk nematic:

(5.83)

Then, combining Eqs.(5.64), (5.82), and (5.83) with Eq.(5.77),
we obtain

+ :: f d r (z-zd);. f dUd w 1dw 2[1/(z,w 1) - 1/(Z+U Z' w 1) ]

X[1/(z,w2) - 1/(z+uz'w2)] c[po;r,w1,r+u,w2].
(5.84)
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This equation rigorously expresses the extrapolation length in
terms of the density response function and the Ornstein-Zernike
direct correlation function in the uniform nematic liquid crystal.
Clearly, the first and the second terms are, roughly speaking,
concerned with the broken symmetry in the vicinity of the
interface, and the third with the anomaly of the curvature
elasticity.

As apparent from its definition, the density response
function is the one which vanishes steeply as one moves across the
interface from the nematic liquid toward the wall. Because of this
quasi-singularity near the interface, it is not necessarily a
straightforward task to construct a reliable approximation scheme
for 71(z,W) near the interface. So, it becomes sometimes
desirable to transform the above equation into an equivalent form
which involves only a less singular response function except for
the density itself. This can be facilitated by normalizing
71(z,w) by the equilibrium density in the undeformed state; we
define

1j(z,W) = 71(z,w)lpo(z,w). (5.85)

It can be shown that 1j(z,w) is continuous even across an
interface between a hard repulsive wall and a fluid consisting of
hard molecules [51]. Similarly, we define

C[Po; r1,w1, r2,w2] = Po( r1,w1)po( r2,w2)
XC[Po; r1,w1, r2,w21,

and also (5.86)
C2[Po; r1,w1, r2,w2] = Po( r1,w1)po( r2,w2)

XC2[Po; r1,w1, r2,w2].

Then, repeating the same procedure by which we have derived
Eq. (5.84) , we arrive at the same expression as Eq.(5.84) but
with the following exchanges,
incorporated.

c-e-c , and
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It is finally worth noting that, in the bulk nematic where
the state of its orientation is specified by the director, the
density response function ~(z,w) reduces to

~(z,w)

(5.87)
which follows directly from Eq.(4.155); Zo is a constant
corresponding to roo Consequently, ~(z,w) and 1,(z,W) turn out
to be a linear function of z in the bulk nematic for each mode of
deformation specified by ~.

5.2.5 Variational principle

It is possible to prove, based on the minimum property of the
thermodynamic potential, that the extrapolation length satisfies a
simple variational principle when regarded as a functional of the
dens ity response function ~ (z,w) . For this purpose, we need to
distinguish two types of extrapolation lengths which derive
respectively from the energetistic and the geometrical
significances of the extrapolation length.

We consider such distribution of nematic molecules at fixed
temperature and chemical potential that correspond, in the region
sufficiently far from the interface, to some equilibrium state
specified by an appropriate set of fd and~; that is, we are to
take up only those density profiles in which a deviation from the
equilibrium one, if any, should be localized near the wall-nematic
interface. As pointed out in Section 4.6, the point of
extrapolation has, on the one hand, a meaning as the point where
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the director, when the bulk profile is extrapolated to the
interface region, approaches closest to the easy axis ne [based
on the measure of length as defined in Eq.(4.156)]. We shall
refer to the extrapolation length in this sense as the
"geometrical" extrapolation length, and denote it as de(G).

On the other hand, as embodied by the thermodynamic
definition of the extrapolation length itself, we can interpret it
as giving a distance over which the bulk nematic should be
extrapolated so as to regard the increase in the interfacial
tension due to the curvature stress as entirely a bulk
contribution [see Section8 4.5.3 and 4.5.4]. Also writing the
boundary tension in nonequilibrium case as )I[

r , this
"energetistic" extrapolation length de(E) is thus given by

(5.88)

where f). r)l[ denotes the orientational part of
tension. In equilibrium, we have of course

the boundary

(S.89)

Let n(z,w) be an arbitrary (not necessarily equilibrium)
density response function which is constrained to approach the
equilibrium form, Eq. (5.87), as Z~OO. And, we shall regard the
extrapolation length de as given by Eq.(S.84) as a functional of
n(z,w). As clear from the course of derivation, de[n] is just
the energetistic extrapolation length delE) associated with the
change in density,

(5.90)

We begin with the consideration of the minimum condition of
the thermodynamic potential for a total system including both the
system in question and its environment [see Fig.121:

(S.91)
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We assume that the director is fixed at the boundary of the
environment, which is itself far away from the boundary between

condition, Qt should assume
the environment and the system located at za. Then, under this

density at fixed T, /.I., fd,
and p, yet associated with
the variations in de(G) and
de(E). In the bulk nematic
(especially in the nematic
environment), the change from
de to de(G) amounts to trans-
late the equilibrium director
profile from n(z) to n[z+de(G)-de]; so that, just as in

a minimum value for an equi-
librium density as shown in
Eq. (5.49) . Suppose a devia-
tion from the equilibrium

Eq.(4.186), we obtain

n
~p

o

~

z

-

FIG.S.12. Virtual translation of the
equilibrium director profile. The
director is fixed at a far off point p.
The extrapolation length changes from
the equilibrium value de to de(G).

(5.92)

where de represents the equilibrium extrapolation length.
Eqs.(S.80) and (5.81), we get

From

(5.93)

Thus, in terms of Eqs.(5.92) and (5.93), Eq.(5.49) can be
translated to

which yields
(5.94)
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The equality holds in equilibrium, in which deCG)=deCE)=de. This
result shows that by using a trial function for ~Cz,w), we can
at least set a lower bound for the extrapolation length; in other
words, the upper bound for the anchoring strength.

Let us briefly illustrate how this variational principle
works, by means of a Rapini-Papoular type model of the nematic
interface. Though it is not a statistical mechanical model, it
would serve as a good caricature of the interface for the purpose
of illustration. We imagine that the nematic is completely
bulklike right up to the interface at z=O, and that, by taking the
dividing surface at z=O, the boundary Cinterfacial) tension r* is
written as a function of the director at the interface; for
simplicity, we consider the one-dimensional case in which only the
polar angle of the director S varies over space. In terms of the
anchoring energy Ea' therefore, )I(r can be written as

(5.95)

Furthermore, we have

S-S = -t ae IK fCS )]1/2d CG)e - d 3 e e· C5.96)

The energetistic extrapolation is thus given by

(5.97)

Using the above in Eq.C5.94), we find

C5.98)

The right-hand side assumes the maximum value K3fCSe)/Ea, when

C5.99)

This is just the value of the extrapolation length that we expect
for the Rapini-Papoular model [see Eq.(4.167a)].
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5.2.6 Variational calculation of the extrapolation length

Equation (5.84) has revealed that a first principle
calculation of the anchoring strength requires the knowledge on
the Ornstein-Zernike direct correlation function and the density
response function both in the bulk and in the inhomogeneous region
near the nematic-wall interface. However, the calculation of such
functions in an inhomogeneous liquid is still far from a settled
problem, and in general needs an extensive computer simulations
and/or some approximate formulas. As emphasized previously,
the present purpose of microscopically treating the nematic
interface is not to perform such microscopic calculations, but to
found a conceptual basis for the phenomenology of the nematic
interface. Indeed, on the basis of the variational principle
derived above, we can qualitatively figure out the principal
factors affecting the anchoring strength in some detail. The
microscopic approaches will be pursued elsewhere.

For simplicity, let us consider the case of a purely polar
anchorage [(3 =0] . In view of Eq.(5.87), we adopt a simplest
possible trial function for the normalized density response
function as

(5.100)

where

Substituting Eq.(5.100) into Eq.(5.84) with the dividing surface
located at zd=O (the point of zero-adsorption of the solid phase),
we find that the energetistic extrapolation length de(E) can now
be written in the following form:

+ J2 + 2J1de(G) + Jode(G)2 + Mo]/K3f(ge),
(5.101)
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where B's, J's, and No are the constants independent of de(G),
which are specifically given by

=

(5.102)
In comparison with Eq.(5.84), it is clear that B's and J'S are
respectively connected with the break-down of the Goldstone
degeneracy and of the inversion symmetry in the interfacial
inhomogeneous region. Under the present approximation, however,
it should be noted that J'S vanish identically; as clear from
Eq.(5.84), the contribution of this term disappear, whenever
7l(z,w) can be factorized as 7l1(z)712(W) or given by a sum of
this type of functions.

In order next to appreciate the physical meaning of NO in
some detail, we rewrite the above equation as follows:

= !:: JdZ Z ~ JdXdYdUdW1dW2Xe(W1)Xe(W1)2A OZ

- Jd Z Z 0 Kef f ( Z ) •oz (5.103)
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In view of Eqs.(S.74) and (5.76), it is clear that

limz ...•oo (5.104)

so that, it appears reasonable to call Keff(z) the effective Frank
elastic constant at the point z, as a generalization of the bulk
constant into the inhomogeneous region.
NO is further transformed to

According to Eq.(S.103),

(5.105)

So, NO can be interpreted as the surface excess of the Frank
elastic constant relative to the dividing surface at zd=O. The
fact that Keff has a correct property as an elastic constant can
be confirmed, qualitatively at least, by applying the gradient
expansion approximation with respect to the density or the
(normalized)
Eq.(S.S4).

When it can be assumed that the inhomogeneous region is

density response function in Eq.(S.S3) or in

localized virtually within a region having a thickness negligibly
small compared with de(G), it follows from Eq.(S.103) that B1 and
B2 can be neglected compared with Bo in Eq.(S.101) to give

(5.106)

Then, using Eq.(S.106) in Eq.(S.9S) and maximizing with respect
to de(G), we obtain

de >
KJf(Se) NO

BO K3f(Se)'

which, upon the use of Eq.(S.10S), reduces to

de > KJf(S~)
+ [00 [1 - Keff(z) ] dz.

BO K3f(Se)

(5.107)

(S.10S)
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Besides negligence of B1 and B2, this is a rigorous
inequality for the equilibrium extrapolation length. Although it
is beyond the scope of the present argument to give a quantitative
estimate for each terms appearing in the above, we can draw a few
important (qualitative) consequences from this result on the
nature of the anchoring of nematics at their interfaces:

(1) The extrapolation length is comprised of two independent
contributions resulting from the g~Qk~n ~Ymm~t~y~ng th~ gi~~~t
int~~~~tlQn ~~~Q~§ th~ n~m~tl~=w~lllnt~~f~~~ (B and J terms)
and the ~nQm~lY Qf th~ ~l~~ti~itYin th~ lnt~~f~~i~lt~~n§ltiQn
~~giQn i~t~y~tY~~l~ff~~tl;
(2) When the orientational restoring force, represented by B
and J in the above, becomes small, the anchoring strength
should weaken irrespective of the elastic property of the
interfacial region of the nematic;

(3) Conversely, as the interfacial region grows, where the
curvature elasticity is relatively w~~k~~ than in the bulk
nematic, the extrapolation length can be arbitrarily large,
independent of the strength of the orientational restoring
force.

Note that the first of the above shows close correspondence with
the results in Section 5.1 as regards the factors determining the
interfacial tension of a wall-undeformed nematic. Finally, it
must be pointed out that by using a more sophisticated trial
functions, the estimate for the extrapolation can be readily
improved. So, the present formula for the extrapolation length,
armed with the variational property, seems to be especially suited
for simulation studies of the anchoring processes.
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5.3 The Landau-de Gennes theory of the nematic interface

5.3.1 Background

The Landau-de Gennes theory of the nematic-isotropic
transition has been described in Chapter 2. This is a
phenomenological theory which consists in expanding the free
energy in powers of the orientational order parameter. It is
therefore clear that, when properly supplemented with a surface
term, it can be readily applied to interfacial phenomena as well.
As a theory to describe the structure of an interface, it is
essentially similar to the van der Waals theory, or gradient
expansion theory, of the interface of simple liquids, which are
known to provide qualitatively (and often quantitatively) good
account of the interfacial properties of ordinary liquid systems
[52]. The only difference between the Landau-de Gennes and the van
der Waals theories is the order parameter with which the free
energy is expanded. Both of These theories stand out as a good
example of few existing theories that can yield meaningful
information on the structure of the interface without detailed
knowledge on the intermolecular interaction supporting the
interface.

The Landau-de Gennes and other related theories of the
nematic-wall, nematic-vapor, and nematic-isotropic interfaces have
been explored by a number of workers [1,53-67]. The advantage of
the Landau-de Gennes type theory is that it automatically allows
us to take account of, in a phenomenological manner though, the
spatial inhomogeneity of the orientational structure near the
interface and the direct interaction between a nematic liquid and
a solid or fluid. As emphasized in Section 5.1, both of them are
expected to play an important role in determining the macroscopic
orientational property of the nematic interface; and, at present,
there is no molecular theory which can properly take care of the
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former factor, in particular. In view of the success of van der
Waals type theories in the case of ordinary fluid interface, it
appears reasonable to expect that the Landau-de Gennes theory
based on the expansion in terms of the order parameter and its
spatial derivatives will produce a correct description,
qualitatively at least, of the nematic liquid crystal interface.

In this section, we will formulate the model of a nematic
interface in the Landau-de Gennes type theory, following the
treatment due to Sluckin and Poniewierski [1,65,66]. And in the
following three sections, we shall apply the theory to some
specific orientational phenomena, with which we will concern
ourselves in the experimental chapters. Since the details of the
theoretical analyses are well documented in the literature, the
description is limited to such an extent as to facilitate an
intuitive appreciation of the physical content of the phenomena.
Those who are interested in details are encouraged to consult
original articles.

5.3.2 Description of the model

Let us consider a semi-infinite nematic liquid crystal in
contact with a solid wall, whose surface is located at z=O as in
the previous section. The fundamental postulate of the Landau-
de Gennes type model is that the thermodynamic potential Q of the
nematic be expressed as a functional of the orientational tensor
order parameter (Oij). In case the system is uniform in the plane
parallel to the interface, in particular, the thermodynamic
potential is written as

C[Oij(zl]/A. = )'00 U[Oij(zl] + Ug[dOij/dZ] dz + U.(Ooijl,
o (5.109)

where the area of the denoted by As. ~[Qij] is the free energy
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density of a uniform nematic with the order parameter 0ij(Z)' ag
the additional contribution from the spatial variation of the
order parameter, and as(OOij) is the solid-nematic interaction
term which is also regarded as a function of the order parameter

The equilibrium structure of the
nematic interface is given by Qij(Z) which minimizes the
thermodynamic potential Q. In comparison with the exact formula
derived in Section 5.1, we can see that the first and the second
terms in the above are directly connected with r*(l) and r*(2)

in Eq.(5.20), respectively.
As mentioned in Chapter 2, the tensor order parameter can be

given, for a uniaxial nematic, by

(5.110)

where n. is the i-th component of the director,
1

and 0 the scalar
order parameter. In the ordinary form of the Landau-de Gennes
theory [53-55], a and ag are written respectively as

(5.111)
2 3 4

and
1 1

(5.112)
where ao is the isotropic contribution dependent only on the
temperature, and az denotes the differentiation with respect to
z. Usually, A is assumed to depend linearly on temperature, i.e.,

*A = aCT - T ), (5.113)

with T* being the supercooling limit of the isotropic phase.
Here, a, B, and C are regarded as temperature-independent
constants, and as mentioned in Chapter 2, a is a function having
double minima at 0=0 and 0b (at least, sufficiently near the
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clearing point Tc)' L1 and L2 are the elastic constants for the
spatial variation of the order parameter. In terms of Q and n,
Eq.(5.111) amounts to a rather complicated expression in which
derivatives of Q and n are coupled with each other, unless L2~0.
When L2=0, however, Eq.(5.112) reduces to a simple decoupled form,

ag

where
Hd(n,dn/dz) = (divn)2 + (n· rotn)2 + (nXrotn)2.

(5.114)
Sheng [56,57], Tarczon and Miyano [60], and Allender [61] used
this simplified form (at n=const.) in combination with Eq.(5.112)
for studying the orientational phase transition at a wall-nematic
interface. Poniewierski and Sluckin [65,66], however, adopted a
Maier-Saupe Free energy density in stead of Eq.(5.111),
supplemented also with Eq.(5.114) with the constant director.
Below we shall use the fourth-order polynomial expression for a
with Band C being temperature-independent constant as in
Eq.(5.111), but gQ nQt n~~~~~~~ilY ~ti~k tQ th~ t~m~~~~ty~~
g~~~ng~n~~ Qf A ~§ ~~~ym~g in ~q~i~~llJl in accordance with
de Gennes' original treatment [53].

To fully specify the model, it is finally necessary to give
an expression for the solid-nematic interaction term as'
Following Poniewierski and Sluckin [1,65,66], we expand as with

But, here, we use the unitrespect to QOij up to quadratic order.
vector ne along the easy axis [58],
normal they have used:

instead of the interface

(5.115)

where G, as' bs' and Cs are the coefficients of expansion. Upon
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introduction of (5.110), Eq.(5.115) reduces to

as = aso + Wo(Qo) + W2(Qo)[l-(n· ne)2]/2
+ W4(Qo)[1-(n. ne)2]2/4

where
(5.116)

Wo(Qo) = -GQo + (as+4bs+4Cs)Q02 = -GQo + UQ02/2,

W2(Qo) = 3GQo - 6(bs+4Cs)Q02 = G2Qo + U2Q02/2,

W4(Qo) = 36CsQ02 = U4Q02/2.

In the absence of W4, Eq.(5.116) just gives the Rapini-Papoular
form of the interfacial tension, which has also be given by
Parsons [57] for the free surface of nematics.

Wo(Qo) is a term which is dependent only on the surface order
parameter Qo. Since, when the director is along the easy axis, the
second and the third terms disappear in Eq.(5.116), the surface
property of an undeformed nematic is solely expressed by the form
Woo According to Sluckin and Poniewierski [67], the second term
of Wo, which involves Uo, is related to the reduction of the
orientational mean field near the interface due to the smaller
number of neighboring molecules near the interface than in the
bulk phase; it can therefore be regarded as corresponding to the
relaxation term r*(l) in Eq.(5.19). Accordingly, we may conceive
that this term is expressing the "disordering effect" of the
interface, so that Uo may approximately be regarded as a positive
constant. The first term of Wo, on the other hand, is a
contribution of an external interfacial torque field, including
the solid-nematic interaction, which tends to orient the nematics
along the easy axis [58,63,67]. So, it is essentially expressing
an "ordering effect" of the interface, implying a positive g.

Furthermore, in order for the easy axis to be a stable
direction for the director, we should have W2>0. In the sense
that the easy axis is incorporated in the expression of as from
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the very beginning, the present model is more phenomenology-
oriented than the original Poniewierski-Sluckin model.

Here, a word of caution is in order concerning the validity
of Eqs.(5.115) and
Poniewierski [1],

(5.116). As pointed out by Sluckin and
when ne does not coincide with the interface

normal, there is always a symmetry breaking over the interface
between the direction along the projection of ne and that normal
to it. As a result, very close to the interface, one should find
a "biaxial" ordering of nematic molecules (as in smectic C phase).
However, in view of the fact that such a biaxial order is
essentially short-ranged, and also that the representation of the
thermodynamic potential in terms of the tensor order parameter
cease to be valid very close to the surface (even when 0ij is
uniaxial or biaxial), it seems reasonable to expect that at least
to the present level of approximation, the expression Eq.(5.116)
remains to be valid.

Before going into the specific analysis of this model, it is
convenient to transform the above equations into dimensionless
forms.
when

Note that the bulk nematic-isotropic transition occurs

(5.117)

where Oc is the order parameter of the nematic phase at the point
of transition. Then, from Eqs.(5.111) and (5.114), we obtain

Oc = 2B/3C, (5.118)

and various other quantities at the transition point Tc:

A(TC)=2B2/9C, and r .=(3CL )1/20 3/12n1 1 c '
(5.119)

where ~c is the coherence length of the order parameter at Tc'
and rni is the nematic-isotropic interfacial tension within the
context of the present model [53,54]. In terms of those
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parameters, we now define the normalized variables as follows:

(5.120)

t; = z/ ~ c>

neT) = 9A(T)C/(2B2).

(5.121)

(5.122a)

In particular, if a linear temperature dependence as in Eq.(5.113)
is assumed for A(T), neT) can be rewritten as

n CT) =
T - T*
T - T* .
c

(5.122b)

In order to simplify the solid-nematic interaction term, we
introduce a dimensionless solid-nematic potential via

(5.123)

and accordingly normalize the coefficients appearing in Eq.(5.116)
as

etc. (5.124)

For example, when n=ne, we obtain

Using these new variables, we can finally express the
thermodynamic potential as

foo d 2
Qa/(3rniAs) = 0 [n(T)q2 - 2q3 + q4 +(d~)

+ 3q2HdCn,dn/dt;)]dt; + 2asCqo),
(5.125)

where Qa is the anisotropic part of the thermodynamic potential,
remaining after substraction of the isotropic contribution due to
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5.4 Wall-induced pretransitional birefringence: Orientational
wetting transition

5.4.1 Variation of the order parameter near the interface

Let us first consider how the orientational order of a
nematic should be (locally) modified, when put into contact with a
solid wall. It is naturally expected that if the solid wall is
such that a nematic molecule feels a stronger orienting field in
the vicinity of the solid than in the bulk phase, the
orientational order may be enhanced near the wall [Fig.5.13(a)].
Conversely, if the solid acts in such a way as to reduce the mean
field for the nematic molecule, we expect that the orientational
order should be deteriorated near the wall [Fig.5.13(b)]. We
shall refer to the former case as the "surface-induced ordering"
and the latter as the "surface-induced disordering." The term
"Wall-induced pretransitional birefringence" derives from the fact
that this phenomenon was first observed by Miyano [68,69] through
a measurement of locally induced birefringence near the wall at
temperatures above the clearing point.

soli d

(0) ordering (b) disordering

FIG.5.l3. Surface-induced
ordering (a) and disordering(b)
transitions in nematic liquid
crystals.

Once the order parameter at the interface (z=O) is given, the
calculation of the order parameter profile can be readily carried
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out by applying the variational calculus to Eq.(5.125). We
assume that the director is spatially invariant; then, from
Eq.(5.125), the Euler-Lagrange equation for the order parameter
becomes

(5.126)

where

together with the boundary condition at the solid surface

dq
d~

=
-
(J s'dq

d
at ~=O. (5.127)

By integrating Eq.(5.126) once with the condition at
infinity, i.e., dq/d~-+O, we obtain

(5.128)

where qb is the normalized equilibrium order parameter in the bulk
phase; at T>Tc' qb=O, and at T<Tc' qb¢O. More specifically, qb is
given by

for T<Tc·
(5.129)

Then, we find

a (q) - a (qb) = (q - qb)2[q2 + ( qb-1) (2q+qb) ],

= ~(T)q2 _ 2q3 + q4,

for T<Tc'

for T>Tc.
(5.130)

Inverting Eq.(5.128), we can write the profile of the order
parameter as an implicit function of ~ as

(5.131)
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where qo is the order parameter at the solid surface (,=0), which
much be determined via the boundary condition Eq.(5.127). An
important quantity, which is experimentally measurable, is the
surface excess of the order parameter defined by

(5.132)

This is directly connected with the surface excess birefringence
at the solid surface.

Using Eq.(5.130) in Eqs.(5.131) and (5.132), we can readily
write down the profile of the order parameter as follows:

(i) T<Tc (nematic bulk-phase),

q = qb - 2qb - 1 +(qb-l)I/2sinh[±,(4qb2_3qb)1/2 + ¢n]'
(5.133)

where the positive sign should be adopted before' when qo<qb'
and the negative sign when qo>qb' and

¢ = sinh-In
2(qb+qo)(qb-1)+qo
(qb-qO)(qb-l)1/2 '

(ii) T>Tc (isotropic bulk-phase),

(5.134)

where
. -1 1/ - qo

¢ i = S 1nh 112 •qo(1/-l)

At the nematic-isotropic transition point Tc' in particular, these
equations can be reduced to
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(i') nematic bulk-phase,
1 - qo

q = 1 - ,
1 - qo + qoexp 2:

(5.135)

(ii') isotropic bulk-phase,

q = (5.136)

5.4.2 Orientational wetting transition in the isotropic phase

In Fig.5.14 shown are the profiles of the order parameter
calculated at various temperatures above Tc' Focusing on the
features that emerge as Tc is approached, we can distinguish two
distinct behaviors which occur depending on whether the surface
order parameter is larger or smaller than Qc' i.e. qo>1 or <1.
Namely, when qo remains smaller than unity, the order parameter
invariably decays over the length on the order of the coherence
length, i .e . , However, when qo>1, we observe that the
orientationally ordered interfacial region grows indefinitely,
resulting in a nematic like layer with a macroscopic thickness;
the solid surface is wetted by the nematic liquid .

•..
Q)a:;
E
c•..
cc..

7J - I' 0.0001

•..
Q)

"Co 0.5

FIG.S.14. Profiles of
the order parameter at
various temperatures
above Tc' n is a variable
specifying the temperature.
The surface order
parameters are qo=1.1 and
0.5.
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6 7 8
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In analogy with the wetting transition at the interfaces of
ordinary liquids [70,71], it may be called the "orientational
wetting transition" [1]. This is one of few examples of the
surface-induced critical phenomena associated with a first-order
bulk transition. Lipowsky [72] also called this type of critical
phenomenon the "interface depinning transition" in the sense that
the interface between the ordered and the disordered region is
liberated from the boundary as the transition temperature is
approached.

As shown above, in a semi-infinite sample, the thickness of
the ordered layer diverges (as long as qo>1) as the temperature
is decreased toward Tc. In real samples of finite dimension, it
is obviously impossible to occur, and more over, because of the
shift of the bulk coexistence temperature, there appears an upper
bound for the thickness of the surface ordered layer. Lipowsky
[72] argued that the upper bound is given, for a sample with a
thickness d, by In(d), and hence the actually observable thickness
of the ordered layer is expected not to be very large even for a
macroscopically thick samples.

The surface excess of the order parameter can also be
obtained by substituting Eq.(5.134) into Eq.(5.132):

(5.137)

Since the birefringence ~n of a nematic liquid is approximately
proportional to the order parameter, the surface excess rord can
be identified, except for a constant factor, with the surface
excess birefringence. Especially, when the bulk phase is in the
isotropic state, the absence of birefringence in the bulk phase
allows us to directly measure the surface excess birefringence.
This is indeed the principle of the Wall-induced pretransitional
birefringence measurement originated by Miyano [60,68,69].
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The quantity which is measurable in real experiments is the
optical phase retardation R defined by

2 fOOR = ~ ~n(z) dz,
'A 0

where 'A is the wavelength of the probe monochromatic light, and

(5.138)

~n(z) denotes the local birefringence in the nematic. Therefore,
writing Rc=~nc~ c' with ~nc being the birefringence at Tc' we
obtain the following relation

(5.139)

Thus, if the retardation R is measured for a known n, the surface
order parameter can in principle be directly evaluated from
Eq.(5.137):

(5.140)

When R/Rc is large, however, this equation becomes quite sensitve
to an error in R/Rc' because qo is given by a difference between
two large quantities. Consequently, in case the orientational
wetting transition does occur, the value of the surface order
parameter determined from the data of

should be
wall-induced

pretransitional birefringence subjected to an
even more significant error as the temperature approaches Tc.

5

4
-c.>
cr 3
<,

0::
Qo=1.12

--

FIG.S.lS. Temperature depen-
dence of the reduced wall-
induced birefringence for
various surface order
parameters. For qo>l, the
birefringence logarithmically
diverges toward Tc (n=l).

o
= 0.1

0.5 1.5
1]-1
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In Fig.5.15, R/Rc is shown as a function of ~-1 (which goes to 0
as T~Tc) with the assumption of constant qo. As apparent from
Eq.(5.132), when qo>l, lord and hence R should diverge
logarithmically with ~-1. In particular, if ~-1 is linearly
dependent on temperature as in a common Landau-de Gennes model, we
find (in the vicinity of Tc)

when qo>l, (5.141)

where c is a function only of qo. This equation indicates that
for a sufficiently large surface order parameter, the retardation
diverges
clearing

logarithmically as the temperature approaches the
point. This is an immediate consequence of the

logarithmic divergence of the thickness of the ordered layer for
qo~l.

On the other hand, if qo«l holds, Eq.(5.137) can be
approximated to give

Under the same condition as above, we see that

when qo«l. (5.142)

5.4.3 Orientational wetting transition in the nematic phase
The case in which the bulk phase is in the nematic state can

be treated in much the same manner as above. The order parameter
profile for this case is shown in Fig.5.16. In this case,
however, an orientational wetting transition occurs when qoSO, for
which a "disordered" surface layer is observed to completely wet
the solid wall as Tc is approached from below. This is the
surface-induced disordering transition in Lipowsky's terminology.
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FIG.5.16. spatial variation of
the order parameter in the
nematic phase for various
bulk order parameters. When qo=O
qo=O, the disordered interface
layer grows indefinitely as
Tc is approached from below.
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When the surface order parameter is larger than 0, the
inhomogeneity of the order parameter is more of less restricted
within the region away from the solid surface by ~c or so. This
situation is essentially identical with what we have seen above Tc
when qo is below qb. In contrast to the case of wall-induced
pretransitional birefringence, however, the surface-induced order
or disorder in the nematic phase has as yet been unambiguously
observed in experiment due primarily to the hazard resulting from
the large optical anisotropy in the bulk nematic phase. So, we
will not present the formula for the surface excess order
parameter.

Nevertheless, it should be pointed out that the anomaly of
surface order in the nematic phase does manifest itself, in an
indirect manner though, in those orientaional phenomena which we
will treat later sections.
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5.4.4 Surface order parameter

So far, we have tacitly assumed that the order parameter at
In reality,the solid-nematic interface is given in advance.

however, we must determine it so as to satisfy the boundary
condition Eq.(5.127). By using Eqs.(5.124), (5.128), and (5.130),
we can rewrite the boundary condition in the form

(T~Tc)·
(5.143)

where we have used the fact that when qo>qb' dq/d~ must be
negative, and when qo<qb' it should be positive. To illustrate
the physical content of the above equation, it is convenient to
utilize a graphical representation as shown in Fig.5.17.

d qto)
d ~ T ~ Tc

(b)
TJ-' =0.2

FIG.S.17. Graphical representation of the boundary
condition Eq.(S.143): (a)T~Tci (b) T2Tc.
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In view of the aforementioned interpretations of g and Uo
terms in Wo as expressing, respectively, the ordering and the
disordering effects of the interface, we always assume here that

9 > 0, and Uo > o. C5.144)

Under this condition, it follows from Fig.5.17Ca) that, when the
bulk phase is in the nematic state, there exists a unique solution
for the surface order parameter. And we see that qo increases as g
increases and/or Uo decreases, just as intuitively clear from
their physical meaning. For constant g and Uo, the surface order
parameter continuously decreases with the increase in temperature.

When the bulk phase is in the isotropic state, however, the
behavior of the surface order parameter is more complicated, and
shows a rich variety of phenomena as discussed by Sheng [63], and
Sluckin and Poniewierski [1]. At a temperature 1~n~9/4, there may
be one or three solutions depending on the magnitudes of g and Uo.
In particular, for a narrow range of g and Uo, the surface order
parameter jumps discontinuously on cooling from a small to a large
value at a temperature slightly above Tc. This is an interfacial
orientational transition called the "prewetting transition." So
far, however, no experimental observation of this transition has
been reported, due probably to the difficulty to control in actual
systems for g and Uo to lie in that narrow range as required by
the theoretical prediction.

When 9 is sufficiently large or small and/or uo is large
enough, Eq.C5.143) allows only one solution. The surface order
parameter, this time,
constant g and Uo.

continuously decreases with temperature at
Obviously, if the ordering component g is

absent, the surface order parameter always remains to be zero.
Anyway, the measurement of wall-induced pretransitional

birefringence gives rise to the surface order parameter qoCobs)
and hence specifies a single relationship between g and Uo, i .e. ,
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qo(obs)=qo(g,Uo). If we have independent information on these
phenomenological parameters, we can in general determine g and uo.
In the next section, we shall more specifically consider how the
surface order parameter is affected by g and uo in relation to the
contact angle at the nematic-isotropic-solid line of contact, by
focusing the attention on the behavior at the clearing
temperature.
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5.5 Contact-angle phenomena at the clearing point [73]

As mentioned in Section 5.1, the contact angle at the line
where the nematic, isotropic, and solid phases meet is far more
sensitve to the orientational contributions in the relevant
interfacial tensions in comparison with the familiar contact angle
that one obtains in nematic-vapor-solid systems. In this section,
we shall investigate more specifically within the framework of
the Landau-de Gennes theory how the contact angle is related to
the anisotropic part of the wall-nematic interaction, and is also
connected with the orientational ordering at the interface.

In order to obtain an
explicit expression for the
contact angle of a nematic
drop [see Fig.5.1S], we need
to find the interfacial ten-

isotropic

sions of the nematic and
isotropic phases relative to
the solid wall at the FIG.5.IS. Contact angle of a

nematic drop at a solid-
isotropic interface.

clearing temperature. Since
the free energy density a(q)

vanishes in the bulk phase, where qb=O or 1 at Tc' the interfacial
tension becomes identical with Qa/As as given in Eq.(5.125).
Then, using Eq.(5.12S), we obtain

a(qb)]1/2 dq + 2as(qo),
(5.145)

which applies to both nematic and isotropic phases. Substituting
Eq.(5.130) at Tc' we can readily express r as a function of the
surface and bulk order parameters:
(i) nematic bulk-phase (qo~O),

(5.146)
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(ii) isotropic bulk-phase,

(a) qo ~ 1,

r si(qo) (5.147a)

(b) qo ~ 1,

rsi(qo) = rni[2 - 3qo2 + 2qo3 - 6gqo + 3uoqo2], (5.147b)

where we have ignored the isotropic contribution from as' since
it does not influence the final result on the contact angle.

For each phase, the equilibrium value of the interfacial
tension can be obtained by minimizing the above expression with
respect to the surface order parameter. This condition of
equilibrium reduces, as it must be, to Eq.(5.143). As noted in
the former section, when the bulk phase is the nematic liquid,
there is only one surface order parameter qOn for each set of g)O
and uo)O:

(5.148)

When the bulk is in the isotropic state, however, the following
three cases are possible: (1) when 2g<uo, there is one stable
solution qOi(L)~l; (2) when 2g1/2<1+Uo<2g+1, there are a low
order-parameter and a high order-parameter (metastable) solutions,
qOi(L)~l and qOi(H)~l, along with one unstable solution; (3) when
1+Uo<2g1/2, there is again only one stable solution qOi(H)~l:

qOi(L) = {1 + Uo - [(1+uo)2 - 4g]1/2}/2,
and (5.149)

The first case denotes the regime in which the disordering effect
due to Uo term is overwhelming the ordering effect of g. In the
second case, both effects are comparable. And, in the third case,
the interface is strongly ordering. Therefore, the surface order
parameter tends to increase as the condition of the interface
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changes from the first toward the third. For example, if the
ordering field is absent, i.e., g=O, we have qOi=O and qOn<l; and,
if the disordering field is absent, i.e., uo=O, we have qOi>O and
qOn>l.

In the first case, we see from Fig.5.17 and Eqs.(5.148) and
(5.149) that

(5.150)

And, it is also clear that for fixed qOn (or qo), we can chose
appropriate g and Uo so that qOi(L) (or qOn) can take an arbitrary
value as long as it satisfies the above inequality. Furthermore,
it should be noted that, regardless of the values of g and Uo,
qOi(L) is always smaller then unity. Now, combining Eqs.(S.146)
and (5.147a) with Young's equation, i.e., rsi=rsn+rnicosa, we
can express the contact angle as a function of the surface order
parameters in the nematic and the isotropic phases:

(5.151)

where qOi stands for qOi(L), and g and uo have been eliminated by
using Eqs.(S.148) and (5.149). The first term in the above
is the contribution from the spatial inhomogeneity of the order
parameter and the second that from (roughly speaking) the solid-
nematic interaction; obviously, the latter disappears when qOn
coincides with qOi. Here, the nematic liquid partially wets the
solid-isotropic interface. However, it should be emphasized when
it happens that qOn=qoi=O, we have cosa=-l so that the nematic
liquid is completely repelled from the solid-isotropic interface;
put differently, the isotropic liquid completely wets the solid-
nematic interface.

Let us next proceed to the discussion of the third case.
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Because of the strong ordering effect of the interface, here we
have

(5.152)

So that, from Eq.(5.146) and Eq.(5.147b), it follows that

(5.153)

and hence, according to Young's equation, we obtain

a = O. (5.154)

This corresponds to the condition of complete wetting of the
solid-isotropic interface by the nematic liquid.

The second case is the hardest to analyze among the three,
as appreciable from the fact that this case is connected with such
a subtle property of the interface as the prewetting transition
which we have mentioned in the former section. Because of the
presence of multiple local minima, the true equilibrium solution
has to be determined by comparison of the interfacial tensions
corresponding to the low order-parameter and the high order-
parameter solutions. For the sake of calculating the contact
angle, however, it is enough to note that if qOi(L) is the
equilibrium solution, the contact angle is given by Eq.(5.151),
and if qOi(H) is so, the complete wetting condition Eq.(5.154)
applies. Therefore, Eqs.(5.151) and (5.154) exhaust all the
possible situations.

The most remarkable feature of the contact angle in question
is that it has a very clear correspondence with the degree of
surface order parameter. Figure 5.19 shows the contour of equal
contact angle on the plane spanned by qOn and qOi' As clearly
seen, if and only if the surface order parameter in the isotropic
phase exceeds the order parameter at Tc' the complete wetting
condition of the nematic liquid is fulfilled. And, as already
mentioned, the complete wetting by the isotropic phase (a=180
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deg) is possible only at qOn=qoi=O.
out that the line of a=90 deg,

Finally, we would like to
point given by qOn+qoi=l, also
deserves a special attention as a line which demarcates the region
in which the nematic order is relatively stable on the solid
surface from that in which the isotropic state is more stable. The
measurement of the contact angle provides us with information on
the energetics of the nematic-wall interface which is
supplementary to that obtainable from the wall-induced
pretransitional birefringence measurements.

co
c-

----~,;o2·
/

/

FIG.5.19. Iso-contact angle
contours on the qon-qoi
plane.

o L-__-L L-__-L L-__-L ~ ___+

o 1.0
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5.6 Anchoring strength in the Landau-de Gennes model[73]

Finally, we shall derive an expression for the extrapolation
length based on the present phenomenological model of the nematic-
wall interface. In contrast to the cases of the surface order and
the contact angle, we need here to take account of the term which
describes the effect of director deformations. Since the polar
(out-of-plane) and the azimuthal (in-plane) anchorages can be
treated in completely the same manner, we will concentrate here on
the case of a polar anchorage.

5.6.1 The model

In terms of the angle between the director and the z-axis,
6, the term in the thermodynamic potential, which is related to
the curvature deformation can be written as [see Eqs.(5.114) and

By multiplying it an arbitrary constant
factor K/3, we use a slightly generalized form of thermodynamic
potential than Eq.(5.125) as follows:

0a/OA•rnl) = f~[~(T)q2 - 2q3 + q4 +(::)2
+ Kq2G~)2 ldl; + 217.(qo).

(5.155)
In accordance with the thermodynamic route of defining the
anchoring strength, we should here conceive that the nematic
liquid crystal is subjected to a curvature stress in the absence
of an external field. The Frank deformation energy density is now
given by

(5.156)

In the present model, we have neglected, for the sake of
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simplicity, the coupling between the spatial variation of the
order parameter and the director orientation.

To find out the anchoring strength through the thermodynamic
formulas derived Chapter 4, we need to calculate the equilibrium
interfacial tension (under a curvature stress) to first order in
fd. By applying the variational calculus to Eq.(5.155) with
respect to 9(~), we obtain the Euler-Lagrange equation for
9 (~) which reads

d d9Kq2 - = 0,
d~ d~

(5.157)

with the boundary condition at the interface

W (qo)(9-9 )2 e at ~ =0, (5.158)

where

and we have approximated sin(9-ge)-(9-ge), since the
deviation of the director from the easy axis is assumed to be
small. From Eq.(5.157), we immediately see that in the bulk
nematic, where q is constant, the Frank elastic energy density
becomes spatially invariant; we shall define a dimensionless
elastic energy density in the bulk nematic fn via

f =n (5.159)

The Euler-Lagrange equation is an expression of the condition
of mechanical equilibrium that the torque transmitted per unit
area be constant throughout the nematic.
can write this condition as

Now, in terms of fn, we

= (2Kq 2f )1/2
b n ' (5.160)
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(S.161)

The equilibrium profile of the order parameter also satisfies
the corresponding Euler-Lagrange equation resulting from
Eq.(S.lSS) [see Eqs.(S.126) and (S.127)]:

d2q dO-(q) (d9)22- = + 2Kq -d.;2 ,
dq d';

and dq(O) dO-s-- =d'; dqo

(S.162)

= dWo(qo)+ : dW2(qo)(9_9 )~
dqo 2 dqo e

(S.163)

where WoCqo)=Wo(Qo)/C6rni)'
If we here denote the equilibrium order parameter profile in

the absence of curvature stress as qe(';)' it is obvious from
Eqs.CS.161)-(S.163) that

(S.164)

where O(fn) is Landau's symbol to denote terms higher than first
order in fn. Because the thermodynamic potential in the absence of
fn is stationary with respect to the small deviation in q(';) from
qe(';)' we can neglect the change of thermodynamic potential due
to the variation of order parameter induced by the curvature
stress. Therefore, we are allowed to replace q(';) by qe(';) in
Eq.(S.lSS) with an accuracy up to first order in fn. For
brevity, we shall simply write q(';) instead of qe(';) below.

Using Eqs.(S.lSS), (S.160) and (S.161), the interfacial
tension of the solid wall-deformed nematic interface can be
written as
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(5.165)
where ro is the interfacial tension in the deformation free
state. Substituting the above into the thermodynamic definition
of the anchoring strength Eq.(4.179b), we arrive at an expression
for the extrapolation length in the present model:

(5.166)

Completely the same equation applies to the azimuthal anchorage.
In this equation, the second term, hereafter referred to as

de(2), is the ordinary extrapolation length representing the
contribution of the direct interaction at the interface. However,
the first term, de(l), is a novel one which apparently comes from
the order parameter inhomogeneity near the interface. And this
term acts in such a way that if the order parameter is lower near
the interface than in the bulk, this term results in an increase
in the extrapolation length and hence weakens the anchoring
strength. The presence of these two distinct contributions is in
complete agreement with the result of the density functional
theory of the anchoring strength [cf. Eq.(5.10S)].

In the present formula, however, the influence of the
structural inhomogeneity appears to be even more serious than in
Eq.(5.10S), since the local order parameter is appearing in the
denominator of the integrand. Let us illustrate this point a bit
more in detail by way of a simple example. If we assume the local
order parameter is given by

(5.167)

we can easily carry out the integration to give
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+ (5.168)

This equation clearly shows that, if the surface order parameter
qo is small, it can make quite a substantial contribution to the
anchoring strength. Indeed, if we set qo = 0.1, and ~ = 16 nm,
which is known as a reasonable value for a coherence length near
the clearing point [74,75], we find de(l)= 180 nm; this is on the
same order of magnitude with the extrapolation lengths measured on
real solid-nematic systems. It is therefore expected in particular
that in case the surface-induced disordering transition (qo~O)
does occur, it is expected to bring about a characteristic
feature on the extrapolation length which is readily

We willdistinguishable in ordinary experimental situations.
indeed present an experimental observation of this behavior in
Chapter 7, made on an obliquely evaporated SiO film-nematic
system.

It should be noted furthermore that when the surface order
parameter is larger than the bulk order parameter, de(l) gives
rise to a negative contribution, which corresponds to a "super-
strong anchoring condition," so to speak. Although the absolute
value of this contribution is not very large, this appears to be
one of the characteristics of this term in view of the fact that
de(2) should be always positive so as to assure the thermodynamic
stability of the alignment. This effect is intuitively readily
understandable, since the enhancement of the order parameter
implies an increased rigidity of the medium, so that it will
become relatively hard to deform this part in comparison with the
normal region.
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5.6.2 The extrapolation length as function of surface order
parameter

Based on the Euler-Lagrange equation, Eq.(5.128), satisfied
by the equilibrium profile of the order parameter q(~), it is
possible to obtain an analytical expression for the extrapolation
length. By a straightforward but tedious calculation, we find

(5.169)

This equation is obviously valid even when ~c is regarded
as a temperature-dependent parameter.

In order to have an image of the nature of the above
equation, let us shortly concern ourselves with the behavior at
the clearing temperature. Since qb=l at Tc' Eq.(5.169) reduces to
a very simple form:

(5.170)

Therefore, the first term de(l), coming from the inhomogeneity of
the order parameter, is seen at this temperature to increase in

-2qQto as the interfacial region becomes
the qQ-1

proportion
orientationally disordered. This is in contrast with
dependence in Eq.(5.168) found by using a trial function which
exponentially relaxes from qQ to qb. This difference can be
ascribed to the fact that, at Tc' the disordered layer near the
interface gradually grows to have a macroscopic thickness as qQ
diminishes, so that a complete "depinning" of the interface
between the ordered (bulk) and the disordered (surface) phases can
occur at last. If we take, for example, qQ=O.l and ~c=16 nm as
before, we now have de(1)=930 nm, which is nearly six times as
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·large as the value found via Eq.(5.l68). This corresponds to a
rather weak anchoring condition. that the influence of the order
parameter inhomogeneity becomes even more significant in the
vicinity of Tc' provided the surface order parameter is
appreciably depressed.

In Fig.5.20, de(l) is plotted as a function of the surface
order parameter at various values of the bulk order parameter
based on Eq.(5.l69). As already emphasized, de(l) increases
rapidly as qo tends to vanish. Furthermore, it should be noted
that the dependence of de(l) on qo changes from the qo-l to the

-2qo dependence as qb~O. When qo is large, de(l) is at around
~c. In this respect, the first component of the extrapolation
length is seen to exclusively reflects the disordering nature of
the solid-wall interface.

10

FIG.S.20. The dependence of the
structural part of the extra-
polation length on the surface
order parameter.
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reduced surface order parameter q,

5.6.3 Model calculation of the temperature dependence of de(!):
Critical behavior near Tc

In Fig.5.2l, de(l) is plotted as a function of temperature
for various values of g and uo [see Eq.(5.l24)] with a special
attention on its relation to the surface-induced disordering
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transition; The calculations have been
performed by adopting the bulk order parameter which changes with
temperature T as

1 (S.171)= - {3 + [9
8

This expression fits the experimental results for 4-n-pentyl-4'-
cyanobiphenyl [73], when the temperature range of superheating

'1<above Tc' i.e. Tn-Tc' is assumed to be 0.24 K.
!'I'TT.,.-,-,-,--r-"T1'T,.,...... ...•• ,---,--rrn-r,...,-...--.------.1TlI103

a

FIG.S.21. Extrapolation length de(l)
due to the interfacial inhomogeneity
of the order parameter for various
surface-potential parameters, u and g.
The solid lines are with g~O and,
from upper to lower (a) Uo = 3, (b)
uo=2 (c) uo=l.~, (d) uo=1.0, (e) uo=0.9,
(f) uo=0.8. The broken lines are with
uo=l.S and, from upper to lower, with
(g) g=O.Ol, (h) g=O.OS, and (i) g =0.1.

Tc - T (K)

As clear from Eq.(S.l48), when g=O and uo>l (namely, when the
disordering field is sufficiently strong in the absence of
ordering field), the surface order parameter vanishes at Tc; and,
Eq.(S.143) shows that, in sufficient vicinity of Tc' qo decreases
on heating according to (Tc-T)1/2 [see Fig.S.221. Concomitantly,
Eq.(S.l69) reveals that de(l) should diverge as 1/(Tc-T), showing
a critical behavior toward the clearing temperature. Since W2(qo)
in general involves a term linear in qo, de(2) is here expected to
less singular than de(l).

The calculated curves with g=O, however, show a slightly, yet
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distinctively smaller exponent than unity even at 10-2 K below Tc'
because of a somewhat slower decrease of 00 than the predicted

a

Te - T (K)

critical behavior.

~oo

FIG.S.22. Temperature dependence
of the surface order parameter
for various surface potential
parameters. The solid lines
are with g=O, from lower to
upper with (a)uo=3, (b)uo=2,
(c)uo=l.~ (d)uo=1.O,(e)uo=O.9,
(f)uo=O.8. The broken lines
are with uo=l.S and, from
lower to upper, with (g)g=O.Ol,
(h)g=O.OS,and (i)g=O.l.

And the deviation from the ideal behavior
even whenbecomes quite remarkable at Tc-1 K. This shows that,

the surface-induced disordering transition does occur, the true
exponent is observable only at temperatures extremely close to Tc'

When g=O but u<1, i.e. when the disordering surface potential
is not large enough, the surface order parameter assumes a non-
zero value qo=1-u even at Tc' thereby making de(1) always finite.
When g)O, qo does not vanish at Tc for any value of u, and as a
result the temperature dependence of de(1) shows a saturating
behavior as the temperature gets close to Tc [Fig.S.211. At lower
temperatures, however, de(l) is seen to approach the curve with
g=O.

The fact that de(1) retains a large decreasing rate even at a
thetemperature

extrapolation resulting
well below Tc is a universal feature of

parameterlength
inhomogeneity [see Eq.(S.l69)1;

from the order
this is due to the fact that, as

the temperature is lowered, qo approaches qb' thereby reducing
the inhomogeneity near the interface. Consequently, this
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structural contribution is expected to be important only down to a
few degrees below Tc.
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Chapter 6

ORDER-DISORDER PHENOMENA

AT NEMATIC INTERFACES

By way of the Landau-de Gennes model of a nematic interface,
we have learned in the former chapter that the orientational order
near the interface is subjected to various alterations according
to the anisotropic nature of the interface. And, a few
experiments have been suggested, which would yield direct
information on the anisotropic part responsible for those changes:
(1) Wall-induced pretransitional birefringence, (2)Contact angle
experiments at the temperature of the coexistence of the nematic
and the isotropic phases, and (3) Measurement of the anchoring
strength. In particular, the first two phenomena are connected
with the term in the phenomenological expression of the
interfacial tension, which does not explicitly contain the
director; that is, the term solely governing the occurrence of
orientational order or disorder at the nematic interface.

In this experimental chapter, we shall present the results of
observations of these phenomena, focusing on the
aspects of the nematic interface; the topics
director anchorage will be treated in Chapter 7.

In Section 6.1, the measurements of the contact angle at the
nematic-isotropic-solid three-phase contact line, performed for

order-disorder
concerning the

various substrates, are described. First of all, the results of
these observations reveal that the contact angle greatly varies
from one substrate to the other, even though these substrates
produce uniform alignment of good and apparently indistinguishable
quality in the nematic phase. In particular, the substrates
treated by the well-known "rubbing" and "oblique evaporation"
techniques were found to exhibit completely opposite result as

6 - 1



regards the contact angle; the rubbed polyvinylalcohol surface is
well wet by the nematic liquid, while the surface with an
obliquely evaporated SiO film is almost completely wet by the
isotropic liquid. If the prediction of the Landau-de Gennes model
of the nematic interface is correct, this observation implies that
the orientational order at these nematic interface should be very
different from each other. It is also revealed that the contact
angle experiments, more precisely the texture observations in the
nematic-isotropic coexistence regime provide us with large amount
of information which reflects various subtleties occurring at the
interface.

In Section 6.2, we present the results of the wall-induced
pretransitional birefringence experiments done on the rubbed
polyvinylalcohol (PVA)-nematic and the obliquely evaporated SiO-
nematic systems. These experiments unambiguously show that, as
least in the isotropic phase, a dramatically enhanced
orientational order does exist at a rubbed polymer-nematic
interface, but at the SiO-nematic interface, the orientational
order, if any, should be several orders of magnitude smaller than
that at the rubbed polymer-nematic interface. In combination with
the results of contact angle experiments, these observations
demands (within the context of the Landau-de Gennes model) that
the orientational order has to be accordingly enhanced or reduced
even in the nematic phase.

Finally, in Section 6.3, the effect of layer thickness on the
nematic-isotropic transition is examined by reducing the thickness
of nematic layer down to below one hundred nanometers in between
lens-shaped substrates. Though still highly qualitative, the
results of this experiment independently confirm the above
prediction by showing a correct enhancement or depression of the
transition temperature with the reduction of thickness, depending
on the substrate used.
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All of those results show
description of a nematic interface,

that the phenomenological
formulated in terms of the

simplest orientational order parameter, gives rise to consistent
picture as to various essentially distinct phenomena, at least
near the phase transition pOint. A success of such an order
parameter theory of nematic interface is expected to have a deep
implication for the understanding of interfacial properties of
other liquid crystalline phases, whose transition are also
described by an appropriate order parameter.
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6.1 Contact angle phenomena at the clearing point: Equilibrium
shape of a nematic drop at the isotropic-substrate interface[11

The contact angle we will be concerned with is the angle made
by the nematic-isotropic, nematic-substrate, and isotropic-
substrate interfaces when they meet together. As noted in Chapter
5, this rather exotic contact angle is expected to be quite
sensitive to the anisotropic property of the interface. However,
because the nematic and isotropic liquids can coexist in
equilibrium only at the clearing point, the observation of such a
contact angle is possible only at this unique temperature. Here
we present the results of an extensive observation of the contact
angle of 4-n-pentyl-4'-cyanobiphenyl (5CB) with respect various
substrates including rubbed and obliquely evaporated surfaces.

6.1.1 Measurement of the contact angle

In principle, the contact angle in question can appear only at
the nematic-isotropic transition point [Fig.6.11. So, it might
seem at a glance difficult to perform such an experiment in a
well-controlled fashion. However, the phase transition of a real
liquid crystal is by no means i~eal, but due to inherent impurity
in the liquid crystal, the
transition is more or less
broadened over a finite tem-
perature.
showed a

The SCB we used isotropi c nematic

nematic-isotropic
two-phase region of about
2X10-2 K as delivered.
Hence by a careful control of
temperature, it is not diffi-
cult to stay in this tempera-
ture region for indefinitely

solid

FIG.6.1. Nematic-isotropic-solid
three phase line of contact.
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long time, observing the true equilibrium state of the contact.
For the purpose of this observation, we have devised a

precision temperature-controlled polarizing microscope in which
the sample temperature can be fixed with an accuracy better than
10-3 K [see Appendix 1]. The contact angle was measured by a
modification of the sessile
drop method. Here, however,
the drop of a liquid was
brought about by a sponta-
neous heterogeneous nuclea-
tion on the surface of the
substrate which occurred as
the temperature was lowered
(raised) from the isotropic
(nematic) state [Fig.6.2].

isotropic ~
{nematic} ~ nematic

~ (isotropic)
I .

FIG.6.2. Heterogeneously nucleated
drops of the nematic (isotropic) phase
in the sea of the isotropic (nematic)
phase.

And the temperature was fixed
at an appropriate temperature
during the observation.

The liquid crystal was confined in between a pair of
identical substrates forming a sandwich-type cell of about 40 #m
thickness. Because the drop of a nematic (or isotropic) liquid so
obtained was at best 500 #m in diameter, it was not possible to
use a familiar optical reflection method or such for measuring the
contact angle. At present, we observed the drop under a
polarizing microscope with monochromatic illumination at the
wavelength of 560 nm. According to the variation of thickness over
the nematic (or isotropic) drop, optical interference fringes
appear, from which we can estimate the approximate shape of the
drop. In order to have a maximum fringe visibility regardless of
the orientation of the nematic director, we used crossed circular
polarizers. The solid substrate examined and the method of
surface treatments are listed in Table 6.1.
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TABLE 6.1 Substrates, methods of treatment, and the alignment.

Substrate AlignmentMethod of
treatment

Rubbed PVA Planar

Bare PVA

SiO (e)

" 0e =0, 60,

80"

As cleaned
Glass

Rubbed Glass

Rubbed and
Cleaned
Glass

CTAB film

Glass slides were spin-coated with
1 wt% aqueous solution of polyvinyl-
alcohol(PVA), dried, and then rubbed
with lens cleaning paper 100 times.

Glass slides were spin-coated with
1 wt% aqueous solution of PVA and
dried.

SiO was vacuum evaporated onto a
glass substrate at a desired angle
e from the surface normal at the

Random
Planar

(Random)
Planar

or
Tilted

Random
Planar

Planar

Quasi
Planar

Homeotropic

rate of 7 A/s for 90 s.

Glass slides were cleaned by a

hot (70°C) detergent, subjected to
sonication for 5 min, rinsed with
distilled water, soaked in acetone,
and blown with dry nitrogen gas.

Cleaned glass slides were rubbed
with lens paper.

Rubbed glass was re-cleaned by the
same procedure as above.

Glass slides were dipped into a
chloroform solution (0.5 %) CTAB*.
after dried, excess CTAB was wiped out.
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On cooling or heating, the number density of nuclei is
heavily dependent on the rate of temperature scan. In particular,
if the new phase appearing in the mother phase has a small contact
angle, it often happens that the small drops rapidly connect
together, forming a metastable uniform layer. Once such a
metastable film is formed, it is no longer possible to measure the
equilibrium contact angle. So, the rate of cooling or heating has
to be carefully determined so that an isolated drop could be
prepared.

In order to estimate the shape of the drop from the fringe
patterns, we need to have some knowledge on the configuration of
the director inside the nematic. In the case of SCB, the director
is known to be tilted from the nematic-isotropic interface by an
angle about 28 degrees from the interface [2,3]. Hence, for planar
and homeotropic boundary condition, the director configuration
which is compatible with the restriction at nematic-isotropic and
nematic-solid interfaces may be drawn as something like that shown
in Fig.6.3. These configurations are essentially identical with
that observed in a nematic sphere suspended in its own isotropic
phase [4].

~diSClinatian~

tf!ff?\ ~
plana r homeotropic

FIG.6.3. Director configuration in nematic drops
with planar or homeotropic boundary condition.

In these configurations there appears a characteristic
disclination on top of the drop. In particular, in the case of a
planar alignment, it follows that a disclination line should
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appear perpendicular to the initial alignment direction with an
enhanced optical anisotropy. This is in good accord with the
observation for the nematic drop as shown below. When the contact
angle is small, so that the
nematic drop is rather flat,
a rough estimate of the con-
tact angle can be obtained by
counting the order of fringe
at the center of the drop
without knowing the detailed
structure of the director FIG.6.4. Geometry of the drop.

profile in the drop. From
the value of the birefringen-
ce ~n=O.ll, we see that at this wavelength of observation, one
fringe corresponds to the nematic layer thickness of about 5 #m.
Then, knowing the depth h and radius r of the drop, and assuming
that the nematic-isotropic interface is spherical [Fig.6.4], we
can approximately calculate the contact angle a via

(6.1)

If the nematic drop is to assume an obtuse angle, it becomes
impossible to straightforwardly apply the above mentioned
procedure. But in this case, an isotropic drop brought about on
heating the sample has a complementary acute angle. So that in
this case too we can obtain a measure of the nematic contact
angle.

6.1.2 Microscopic observation of sessile drops

For those substrates listed in Table 6.1, the equilibrium
shape of nematic or isotropic drops were observed by means of the
precision temperature-controlled microscope. Micrographs of the
observed sessile drops are shown in Figs.6.5-6.14. And the
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resulting contact angles are tabulated in Table 6.2. The scanning
rate of temperature, till a first nucleus appeared, ranged from
smaller than 10-3 K/hr up to 10-1 K/hr, depending on the contact
angle of the new phase on the substrate.

A. General description
In actual observations, what appears most striking is the

regularity of the shape of the equilibrium sessile drops; except
for those cases in which the substrate surfaces are rather
damaged, the drops of new phases invariably assume almost
perfectly circular shape. This shape is quite stable, and, as far
as the present results are concerned, there is no problem as
hysteresis associated with the advancing and the receding angles
[ 5 ] • When two neighboring drops coalesce, in particular, the
initial dumbbell-shaped domain retains a circular shape in a few
minutes. In view of the small interfacial tension (on the order
of 10-5 J/m2) of the nematic-isotropic interface, this readiness
of the drops to assume circular shape is really surprising. This,
on the one had, shows that there is not much hazard on the
substrates as to pin the three-phase contact line, and on the
other, indicates that the circular shape observed can indeed be
regarded as an equilibrium shape of the liquid drop.

B. Specific observations
1. Rubbed and Bare PYA

At a rubbed PYA film-isotropic liquid interface, the drop of
nematic 5CB adopts a very small contact angle less than 20Q

•

[Fig.6.5(a)]. This corresponds to the case of almost perfect
wetting condition by the nematic liquid. And, indeed in some
preparations, we observed that upon cooling from the isotropic
phase, a uniform "epitaxial" nucleation of a nematic film grew to
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form an almost uniform layer of the nematic [Fig.6.S(b)]. Because
it is difficult to characterize and precisely reproduce the pro-
cess of rubbing [6], we have not as yet succeeded in clarifying
the factors affecting the variations in the contact angles.
Whether the epitaxial growth mentioned above is indeed the growth
of a continuous film from the beginning or as a consequence of a
rapid coalesence of isolated nuclei could not be determined even
at the lowest rate of cooling.

500 flm

FIG.6.5(a). A drop of nematic resting at the
interface between a rubbed PVA and the isotroic
liquid. Note the clear disclination line on top
of the drop.
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FIG.6.5(b) The "epitaxial" layer growth
of nematic phase upon cooling from the
isotropicphase. Substrate: rubbed PVA.

As expected from the presumed director configuration in Fig.6.3, a
disclination line which is apparently bisecting the drop has been
observed. Further from the distortion of the birefringence
fringes by the disclination line, the optical anisotropy is seen
to be larger along the disclination.

As an extreme case of a weak rubbing, we observed the sessile
drop resting at the bare (unrubbed) PVA-isotropic interface
[Fig.6.61. The result in this case is dramatically different from
that on the rubbed PVA, showing a nearly rectangular contact
angles for both nematic and isotropic drops. In comparison with
the results for the rubbed PVA, it is clearly indicated that by
th~ y~~y ~Yhhing g~tiQnL th~ EYA g~qYi~~~ gn ghility tQ YnifQ~mlY
glign n~mgti~ liqYig ~~y~tgl g~ ~~ll g~ tQ h~ ~~t hy th~ n~mgti~

Hence they may be interpreted as resulting from the same
microscopic origin. As shown below this is an observation to be
sharply contrasted with those for evaporated SiO surfaces.
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500 flm

FIG.6.5(c) Drops of nematic liquid resting
at the interface between the isotropic liquid
and bare PVA. The regions wi thou concentric
fringes are the part where the nematic occupies
the whole volume in between the two substrates.

2. Evaporated SiO
At the SiO-SCB interface, the nematic drop assumes an obtuse

angle on cooling from the isotropic phase. Thus, we made an
observation of the contact angle of the isotropic drop at the
interface to measure the complementary angle of the nematic
contact angle. In Fig.6.7 displayed are the micrographs of the
isotropic drop in equilibrium with .the nematic liquid on SiO films
evaporated at and 80° from the substrate normal.
Clearly, the isotropic liquid are now almost perfectly wetting the
substrate. Though they may seem quite similar to the rubbed PVA
case [Fig.6.S(a)), a characteristic difference can be readily
noticed concerning the disclination line appearing at the center
of the circular drops [Figs.6.7(a)&(b)); that is, the optical
anisotropy is now lower around the disclination line than
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otherwise expected. This is probably because the director
surrounding the isotropic drop is arranged in a complementary
fashion when compared with the nematic drop.

500 pm

FIG.6.7(a) Isotropic drops in equilibrium with
the nematic liquid at the surface of SiO(OO).

FIG.6.7(b) Isotropic drops resting at the
interface between the nematic and the SiO(600).
The separation between two fringes correspondes
to the thickness change of about 5 urn.
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500 pm

FIG.6.7(c) Sessile drops of the isotropic
liquid resting on the SiO(800).

Comparison between the cases of normal evaporation and 60°
evaporation shows that, in contrast to the rubbed PVA and bare
PVA, the contact angles at these SiO films are almost identical
with each other quite independent of whether the substrate aligns
the nematic in uniform direction or not. So, it is natural to
conceive that the Q~igin Qf th~ YnifQ~m ~lgng~ glignm~nt Qn
SiQiQQo1 gng th~ n~g~lY ~Qm~l~t~R~tting QY th~ i~Qt~Q~i~liqYig
g~~ ing~~~ng~ntg~~~~t~ Qf th~ int~~fg~~~

In the case of SiO(SOO), however, we do not find any
disclination line over the surface of the drop. As the director
may be tilted on this substrate, the disclination line is expected
to be repelled toward either sides of the circle to avoid the
occurrence of an area with large orientational deformations.
Clearly, the drop appears to be exceptionally flat judging from
the separation of fringes. The contact angle of the "isotropic"
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drop was estimated to be as small as 120 even after the
correction of the pretilt angle was approximately taken into
account. If we further take account of the contribution from the
roughness [7] of the deposited SiO film as given in Ref.S, the
intrinsic contact angle can be even made larger than that for the
SiO(60° ). However, since no reliable information on the roughness
of the SiO films is available, we shall work with the apparent
contact angle here.

3. As-cleaned, rubbed, and rubbed and cleaned glass
On as-cleaned glass, the alignment of liquid crystals is

unstable depending on their purity and the cleaning condition of
glass substrates [9,10]. Be it planar or homeotropic, the
contact angle of a nematic drop was observed to assume an obtuse
angle [1]. In Fig.6.S the polarizing micrograph of a sessile
isotropic drop is shown.

500 pm

FIG.6.S. Sessile isotropic liquid drops
at the interface between the as-cleaned
glass and the nematic phase.
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Here we can see a bisecting disclination line characteristic to an
isotropic drop resting on a planar-aligning substrate just as we
have seen in the case of evaporated SiO films. The contact angle
of this isotropic drop is as small as 28° ,
stability of the isotropic phase.

When the glass surface was rubbed with the lens tissue, which

showing the relative

was the same as that we used for PYA films, we observed a drastic
change of the nematic contact angle from obtuse to acute [see
Fig.6.9(a)]. In this case, however, the wetting property of the
glass surface was astoundingly irregular as shown in the Figure.
And we could observe the three-phase contact line to have been
pinned largely along· the rubbing direction [note the direction of
the disclination line]. The nature of this defect is not clear.

500 o=
FIG.6.9(a). Nucleated irregular domains of the
nematic phase on rubbed glass surface. Note,
however, that the contact angle of the nematic
domains is rather small.
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When the rubbed glass surface was again cleaned with the
standard cleaning procedure, the resulting alignment was still
highly anisotropic in the direction of rubbing; but the contact
angle was almost that we should obtain on as-cleaned glass [see
Fig.6.9(b)). Then, it seems likely that, by the cleaning process,
some contaminant introduced by the rubbing action is removed
exposing the intrinsic surface of the glass, but there remains a
structural anisotropy on the part of the glass itself (groove,
aligned microcrystals, etc.) which then takes action to align
nematic molecules. The contaminant is obviously responsible to
make the nematic contact angle that small. And, in comparison
with the observations on the SiO films, it may be so much in error
if we assume that the alignment mechanism of the as-cleaned and
the rubbed (intrinsic) glass is essentially similar to that of the
SiO films.

500 flm

FIG.6.9(b). Equilibrium shape of an isotropic
liquid drop observed when the rubbed glass
substrate was cleaned again by detergent, etc.
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As noted in Chapter 3, the contaminant vs groove mechanisms
of surface-induced alignment is a matter of long debate. The
above observation seems to be of interest in the sense that it
could visualize the fact that both mechanisms are indeed in action
with some rough feeling of their relative importance in various
situations.

4. CTAB film
This is here the only case in which homeotropic boundary

condition prevails at the solid surface.
nematic drops resting on the CTAB film.

Figure 6.10 shows the
In agreement with the

prediction based on the conceived configuration of the director,
we can see that at the center of the drop is a point disclination
where the optical anisotropy is always absent. In this case, the
estimation of contact angle is somewhat difficult because of the
less significant thickness-dependence of the optical anisotropy.
However, from the size of the drop which is just to touch the
counter substrate, we can obtain a rough estimate of the shape of
the drop based on the knowledge of the cell thickness. This way,
we find the contact angle of about 70° for the nematic drop.

FIG.6.10. Sessile nematic
drops on the CTAB-coated
substrates. The dark
circular regions
surrounded by bright
thin lines are the
nematic domains in
contact with both lower
and upper substrates.

500 11m
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6.1.3 Summary of contact angle experiments

The observed contact angles of the nematic drops on various
substrates are listed in Table 6.2.

TABLE 6.2. Contact angle of nematic 5CB
at various solid surfaces.

Substrate contact angle of the
nematic liquid, a

(degrees)

Rubbed PVA < 20

Bare PVA

SiO( 0° )

SiO(60° )

SiO(80° )

90

160*

160*

170*

150*As cleaned Glass

Rubbed Glass irregular but small

155*Rubbed and cleaned
Glass

CTAB film 70

* Values calculated from the contact angle
of the isotropic liquid.
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6.1. 4 Relative stability of the nematic and the isotropic phases
on treated surfaces

Upon plotting these results on the contact angle vs surface
order-parameter space [see Fig.5.19J derived from the Landau-de
Gennes theory as shown in Fig.6.11, we can clearly see the
characteristic features of the present results.

e
o

0'"

/ oo-CTAB film

FIG.6.11. Contact angles of
a nematic drop on variously
treated substrates. Plotted
over the iso-contact angle
contours on the plane spanned
by the surface order parameters
qon and qoi' respectively, in
the nematic and the isotropic
phases [cf. Fig.5.19J.

/
/

/~oo
/ / "BarepvA

/ /1100
/

/

/
/

/ As cleaned Glass

r- 50~ bb~SiO(O·)-Ru ed & Cleaned Glass
/ ';---SiO(60·)a / 70-SiO(SO·)

a 1.0
qol

Namely, there exists a general tendency that rubbed or organic
substrates are likely to give a small contact angle for the
nematic, whereas inorganic substrates bring about an obtuse angle.
Thus, based on Young's equation,

r si = r sn + r nicos a,

we can conclude that on rubbed or organic substrates, the nematic
state is more stable than the isotropic state (rsn<rsi)'
inorganic substrates, the nematic state is less

but on
stable

<rsn>rsi) than the isotropic state; for more detailed discussion
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of the factors determining the equilibrium shape of a nematic
drop, taking account of the anisotropy of nematic liquid, see
Appendix 2. Furthermore in Fig.6.11, we see that, as long as the
Landau-de Gennes theory of the contact angle is correct, the
surface order parameter at SiO or glass surface should be lower
than the bulk order parameter, but at rubbed PVA or Glass, the
surface order parameter has to always be comparable with the bulk
nematic order parameter at the clearing point.

In view of the well-accepted fact that inorganic surfaces are
usually of higher energy and strongly interacts with foreign
substance, it might appear unreasonable that inorganic substrates
are less efficient in orienting nematic molecules than organic
substrates are. Although it is not the primary aim of this
article to speculate on the origin of the alignment, it may be
appropriate to give some words of justification for such unusual
behavior as above.

The strong interaction between inorganic solid and nematic
implies that nematic molecules should form themselves a strongly
adsorbed layer. Circumstantial evidence for the existence of such
a layer has been given by the fact that an SiO(O° ) surface, which
does not usually align nematics uniformly, can be made to orient
nematic director by introducing the nematic liquid with a strong
flow in the prescribed direction [11]; this unique axis persists
even when the nematic is brought to the isotropic state.

Thus, the substrate that influences the bulk orientation is
not the solid itself, but the solid covered with the nematic
layer. And, the interaction between the adsorbed nematic layer
and the neighboring nematics is of primary importance in
determining their interfacial properties. Now, let us ask what
happens when the nematic molecules in the adsorbed layer are
oriented randomly rather than uniformly. On the one hand, it is
clear that the effect of the adsorbed layer is to shield the field
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due to solid. In this case, on the other, the mean-field felt by
adjacent nematic molecules may be rather weakened in comparison
with that in the bulk; this is because the large part of its
neighbors are randomly oriented. Therefore, at least in the mean-
field approximation, we would expect the orientational order near
such a randomly adsorbed layer should be more or less deteriorated
than in the bulk nematic phase. The effect of random field on the
order formation [12,13] has been studied in conjunction with
magnetic systems, invariably showing a certain reduction of the
phase transition temperature or even a disappearance of the
ordered phase itself.

6.1.4 Temporal change of the contact angle on evaporated SiO

Finally, in this section, we present an interesting
observation concerning the contact angles on evaporated SiO(60° ).
As shown above, the contact angle of a nematic drop on the
SiO(60o) is large, showing the relative instability of the
nematic order. However, we observed that this contact angle was
not a constant, but continuously changed from the time of
preparation.

Figures 6.12 and 6.13 show the polarizing micrographs of the
isotropic sessile drops 4 days and 10 days after the preparation,
respectively. In the first 4 days, the sample was stored at a
temperature a few degrees above the clearing point, and in the
next 6 days, it was left at room temperature in the nematic phase.
The micrograph just after the preparation has been shown in
Fig.6.7(b).
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FIG.6.12. The equilibrium shape of the isotropic
drops on SiO(600) 4 days after the preparation.
During this time, it was stored in the isotropic
phase.

500 11m

FIG.6.13. The equilibrium shape of the isotropic
drops on SiO(600) 10 days after the preparation.
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As readily discernible, the
contact angle theof
isotropic drop has decreased
steadily with time elapsed.
In Fig.6.14, the contact
angle of the nematic liquid
is plotted as a function of
time.

The contact angle may
change as a result of various
reasons such as impurity ad-
sorption,
adsorbed

rearrangement of
molecule, etc.

However, the time scale of
the change seems to be too
long for the impurity adsorp-
tion to be dominant. It is

Q)
Q)•... 16en
Q)
-c

Q)

en
c
0

-u
0..-c
0u

140

o 5
Time

10
(days)

FIG.6.14. Time variation of the
contact angle (for the nematic)
on SiO(600) after its preparation.

indeed a right order of time
constant for the desorption and adsorption of strongly adsorbed
molecules. Then, if it is correctly the manifestation of the
spontaneous ordering process whose rate is limited by adsorption-
desorption mechanism, it can indeed be considered as evidence for
the existence of randomly oriented adsorbed layer.
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6.2 Wall-induced pretransitional birefringence

Wall-induced pretransitional birefringence yields direct
information on the surface order parameter in the isotropic phase.
So, it is a kind of experiment that supplements the knowledge
drawn from the contact angle experiments. In view of the very
different contact angles observed for the evaporated SiO films and
the rubbed PVA, we have carried out the wall-induced birefringence
experiments. The results of these measurements were found to be
consistent with the contact angle experiments.
parameter at the rubbed PVA-5CB interface is
with the order parameter in the nematic phase.
5CB interface exhibits only a negligible
pretransitional birefringence.

Birefringence measurement is the most powerful method to
probe the orientational structure of liquid crystals. Since this

The surface order
almost comparable
However, the SiO-
level of the

method has been extensively employed and plays an important role
in the present study as well (for thin film transition as well as
anchoring strength measurement), it may be appropriate here to
describe the elements of the ellipsometric birefringence
measurement we have used in some detail. The results of the wall-
induced pretransitional birefringence experiments follow next.

6.2.1 Measurement of a small optical phase retardation
Technically speaking, the wall-induced pretransitional

birefringence experiment is nothing but a measurement of small
optical anisotropy in liquid crystals. Although there are
numerous methods available for measuring the refractive index of
liquid crystals, the ellipsometric technique [14] may be the most
sensitive one as far as the ~i~~t~ing~n~~ measurements are
concerned; it may well be applied to the detection of a
submonolayer-equivalent retardation.

Here, we shall describe the fully automated ellipsometric
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system developed in our laboratory, which can detect a minute
retardation down to 10-5 rad.

In Fig.6.15 shown is the setup of the ellipsometer system.
The basic structure is identical with the ordinary ellipsometer.
The light from a 2mW He-Ne laser is polarized, and is transformed
to a circular polarized wave by a quarter wave plate. This
light beam then passes through a stress-plate polarization
modulator [15] and is led to the sample cell, which is placed in
an electric oven. The strength of the transmitted light is
detected by a phtodiode through a quarter wave plate and a
polarizer. The retardation due to the optical anisotropy of the
sample can be obtained by measuring the first and the second
harmonic components of the output light with respect the frequency
of the polarization modulation.

photo-
diode

oven
I( t)

lock-in ~----------1 dri veT
amp.

computer

FIG. 6 .15. ExperImental setup---for optical phase
retardation measurements. The basic structure
is the automatic transmission-type ellipsometer
based on the polarization modulation scheme.
The modulator is operated at about 30 kHz, and
the reference signal is fed to the lock-in amplifier.

The quantitative operation of this system can be readily
analyzed when the imperfections of the optical parts can be
neglected. At first, we assume that each pair of quarter wave
plate and polarizer before and after the sample cell are set to
form in each a circular polarizer; the optic axis of the quarter
wave plate is incl ined from that of the polari zer by ± n:/4.
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Further, we assume the circular polarizers are set in such a way
that in the absence of the sample and the modulator, the out put
signal vanishes.

Let J=E(i,l) be the Jones vector representing the circular
polarized light emitted from the first quarter wave plate with the
principal axes of the stress plate modulator taken as the
coordinate axis. Then, the action of the stress plate modulator
is to modify its phase in a time dependent manner as follows:

J' = E (i, exp iC/>(t» . (6.2)

After passing through the optically uniaxial sample, whose optic
axis is inclined by a from the axis of the modulator, J' is
further transformed to

J" = E{exp(iR)[icos2a - exp(iC/»sin2a],

[isin2a + exp(iC/»cos2a]}, (6.3)

where R is the retardation due to the sample. Repeating these
procedures until the end of the last polarizer, we obtain the
time-dependent light intensity which impinges on the detector I(t)
as

I(t) = Io[1 - cosC/>cosR - cos4asinC/>sinRl. (6.4)

When
The

R=C/>=O, it follows that I=O as required from the
phase modulation C/>(t)induced by the modulator is

setting.
generally

written as
C/>(t)= C/>osin21tft. (6.5)

Therefore, by extracting the f- and 2f-components of I(t), we can
obtain both sinR and cosR. Hence, in this method, R can be
uniquely determined except for a difference of 21tn. Another
advantage comes from the fact that when R is small, the DC
component of I(t) also becomes a small quantity. So that, in
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dealing with a small retardation, we can avoid the interference
from shot noise which results mostly from the DC part which plays
no role in the determination of R.

6.2.2 Measurement of Wall-induced pretransitional birefringence

We have measured the residual birefringence near the solid
surface in the isotropic phase of 5CB by applying the above
apparatus. The measurement of wall-induced birefringence has been
performed by several authors [16-211 since the pioneering work of
Miyano [161. At present, it seems that, as far as a qualitative
feature is concerned, a consensus has been reached as to the
relationship between the wall-induced pretransitional
birefringence and the nature of surface treatments. Namely, (1)
rubbed substrate, be it inorganic or organic, brings about an
enhanced order; (2) the surface order on an SiO film is negligibly
small. Therefore, those results are seen to be, as a trend,
compatible with the results of contact angle experiments described
in Section 6.1. However, closer look at the problem soon reveals
that there is still an inconsistency between the results of the
birefringence and the contact angle experiments as pointed out by
Sluckin and Poniewierski [221.

In this section, we report on a high resolution study of the
wall-induced pretransitional birefringence, especially, on an SiO
film-nematic interface. In contrast to the conventional studies,
in which the induced birefringence has been believed not to exist
on an SiO surface, we have observed a small but definitely finite
surface ordering at SiO-5CB interface.

A. Pretransitional birefringence induced by a rubbed PVA surface
In Fig.6.16 shown is a typical trace of the retardation in

the rubbed PVA-5CB cell as the temperature is lowered in the
isotropic phase to the clearing temperature Tc (redrawn on single
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substrate basis). Near Tc' we see an apparently diverging
behavior in a similar manner as shown in Fig.S.1S for the surface
order parameter qo=l.l; however, it should be noted that it is in
effect difficult to determine whether it is a true critical
divergence or not, because the curve is not sensitive to the
change in qo around qo=l as noted in Section S.4, and the observed
birefringence involves a spurious contribution from the glass
substrate ana the aligning PVA film, which, in some cases, amounts
to 10-3 rad. So that, it is impossible to tell with confidence if
the surface order parameter is larger or smaller than the order
parameter in the nematic phase Tc. Moreover, when the retardation
was observed under a very strict temperature control with the
decreasing rate of 10-4 K/hr, the retardation showed a saturated
behavior at temperatures a few 10-3 K above Tc. Such a behavior
is inconsistent with the simple Landau-de Gennes theory of the
wall-induced pretransitional birefringence [see Section S.4], and
is probably connected with the "finite size effect" which
essentially gives the upper bound for the actual retardation.

_.- -- ._---6xI02r-----r------r-----.------.-----.------.-----.------.-----.,----~
rubbed PVA/5CB

c
o

"0
o....4

-o
"0•...
o-G)•... 2

00 0.2 0.4 0.6

temperature T - Te (K)

0.8 1.0

- -- -- -- -- - -- --- ---- ---
FIG.6.16. Wall-induced pretrasitional birefringence at the
rubbed PVA-5CB interface. The retardation shows a quasi-
diverging increase as the clearing temperature (Tc=35.3°C)is approached from the above.
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order parameter. Here, we
Nevertheless, it is still of interest to estimate the surface

utilize Eq.C5.140). On assu-
lieming [23-25] that Tc-T =1.1 K

and Rc=0.011 i.e., ~c=10 nm,
6nc=0.11, we can transform
the above retardation data to
the temperature dependence of
the reduced surface order
parameter qo as shown in
Fig.6.17. Depending on the
magnitude of the spurious
-- --

retardation Rs' the surface
order parameter adopts a
value slightly above CRs=O)
and below CRs=0.002) the bulk
order parameter.
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FIG.6.17. Reduced surface order parameter
qo=Qo/Qc as a function of temperature for
the rubbed PVA/5CB interface. Whether qo
is larger than unity or not strongly depends
on the magnitude of the suprious retardation
Rs'

B. Pretransitional birefringence induced by the SiO film
Figure 6.18 shows the variation of the retardation for the

SiO(60° )-5CB interface.

5xI0-4r-------~------~------_r------_.----~--r_--_,

'"0
o•....

4

a:: 3
s:::
o-.g 2
•....
o-Q)•....

SiO(600) / 5CB

2 4
OL-------L-------~------~------~------~--~
o 3

temperature T-Tc (K)

5

--------

FIG.6.18. Wall-induced pretransitional birefringence at the
SiO(600)-5CB interface. Note that it is two orders of magni-
tude smaller than that at the rubbed PVA-5CB interface.
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Obviously, the absolute value of the birefringence is nearly
two-order smaller than that observed at the rubbed PVA-SCB
interface, showing that the evaporated SiO is less effective in
orienting nematic molecules than rubbed PVA. For a quantitative
argument, however, it should be stressed that, similar to the case
of rubbed PVA-SCB system, there exists a suprious contribution
from the glass substrate and the SiO film, which may be as large
as 10-3 rad and hence be comparable to the observed birefringence
at present. Nevertheless, the temperature dependence of the
spurious retardation was confirmed negligibly small by using a
blank cell; thus, we can estimate the surface order parameter from
the rate of variation of the observed birefringence. By utilizing
the approximate formula Eq.(S.142), which holds for small qo, we
obtain

qo = 0.037, (6.6a)

for the SiO(60° )-SCB interface, where we have assumed the same
values for bulk parameters as used above. Upon using 0c=0.27
[23], we find for the surface order parameter in the isotropic
phase,

(6.6b)

For SiO(O° ), we could also measure the wall-induced
pretransitional birefringence by making use of the flow-aligned
uniform cell [11]. The surface order parameter was estimated to
be Ooi=O.Ol in complete agreement with that we have just obtained
for SiO( 60° ).

6 - 31



6.3 Nematic-isotropic transition in thin bounded films

When a thin layer of nematic liquid crystal is bounded by a
couple of solid substrates to enhance the relative importance of
liquid crystal-substrate interaction, a modification of the
nematic-isotropic transition itself can be expected. Especially,
since the nematic-isotropic transition is of weakly first order
and hence the orientational order parameter is correlated over a
long distance near Tc' a marked change of the transition behavior
can be expected when the film thickness becomes comparable with
the coherence length of the order parameter.

Sheng [26] and Schroder [27] studied the effect of a highly
ordering substrate within mean field theory and showed that the
transition temperature shifts upward as the nematic layer thins,
and below a certain critical thickness of the order of 1000 A, the
transition becomes continuous. Sluckin and Poniewierski[22,28]
also investigated the influence of a disordering substrate, and
showed the occurrence of the depression of the transition
temperature.

The purpose of this section is to describe the experimental
results performed on thin nematic films bounded either by the
oblique evaporation of SiO or by rubbed PVA. It is certainly shown
that depending on the nature of the solid-nematic interfacial
interaction, the nematic transition temperature shifts "upward" or
"downward." Due to the semi-quantitative nature of the experiment,
however, the problem concerning the turn over to a continuous
transition could not be properly tackled. The present results are
completely in accord with the results of the contact angle and the
wall-induced pretransitional birefringence experiments, and point
in the direction that the surface order is deteriorated at SiO
surfaces and enhanced at rubbed PVA surfaces.
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6.3.1 Experimental

Thin films of SCB were prepared by sandwiching it in between
an optical flat glass plate and a half convex lens of 1 m focal
length as shown in Fig.6.19. The substrates were 30 mm in diameter
and the film thickness chan-
ged from practically 0 at the
center to about 200 ~m at
the edge of the substrate.
The surface treatments tried
were, as mentioned above, the
oblique evaporation of SiO
and the coating with PVA film
followed by rubbing. Here,
the treated substrates were
carefully set to give a sin-
gle (withoutcrystalline
twist) nematic film. The
sandwiched film was placed in
a brass cell, and the glass
substrates were loosely fixed
to the side wall with paraf-
fine of 60° C melting point.
The order-disorder transition
was monitored by recording
the birefringence as a func-
tion of temperature by using
the experimental system des-
cribed in the former section.
The light beam was focused to
50 in diameter and~m
impinged perpendicularly on
the nematic film. The sample

Brass Cell LC

(a) Lens
Glass Plate

FIG.6.19. Cross-section view of the
liquid crystal cell (a), and the bire-
fringence Newton fringes observed when
the cell was illuminated with a mono-
chromatic light (540 nm) between
crossed polaroids (b).

6 - 33



cell was placed in a precision temperature controlled oven, and
the film thickness was changed by moving the oven as a whole with
respect to the light path with a micrometer screw.

When studying the phase transition of a liquid thin film, we
often found it difficult to insure the purity of the material,
because of the large surface area-to-volume ratio. At present,
however, the liquid crystal at relatively thick parts may serve as
a reservoir of fresh material for thinner regions. Even if we
assume the diffusion coefficient of the impurity to be as small as
10-7 cm2/s, the ample region of interest (within 1 mm from the
center) can be virtually homogenized in a few days. For this
reason, we always started the observation at least three days
after the sample cell was prepared. In addition, the homogeneity
was occasionally tested by confirming that the retardation varied
symmetrically about the center as expected from the lens' shape.

On the other hand, the cell structure made it difficult do
directly assess the actual thickness of the nematic layer, and
also the film thickness itself seemed to change slightly when the
temperature was varied over a relatively wide range, for example 5

K. However, since we were primarily interested in the qualitative
behavior in the vicinity of the transition point, we restricted
the temperature range of measurement to at most ±0.2 K around the
bulk transition temperature Tc (308.45 K), and the film thickness
was roughly estimated from the retardation value at the lowest
temperature by assuming the birefringence for bulk 5CB, ~n=O.ll.

6.3.2 Shift of transition temperature with the film thickness
Figure 6.19 shows the retardation as a function of

temperature for thin films of 5CB sandwiched between evaporated
SiO layers. For each film thickness, the retardation is
normalized at T=To to emphasize the qualitative changes occurring
in the transition behavior as the nematic film thins.
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FIG.6.20. Temperature dependence of the retardation for SCB thin
films of various thicknesses sandwiched between evaporated SiO
layers. For thicker films, the steepness of the transition is
limited by the lO-2°C-wide two phase region due to inherent
impurity in the nematic. Tc=3S.3°C.

The most striking feature, here, is that the order-disorder
transition changes from the virtually discontinuous one at 4900 A
to an apparently continuous one for thinner films. It must also
be noted that the transition temperature, if it is identified with
the inflection point, shifts downward by a few 10-2 K with the
decrease in the film thickness. This result is consistent,
qualitatively at least, with the previous observation that the

•ordered phase is less stable than the disordered phase on this
substrate.

In macroscopic terms, the variation of the transition
temperature, ~T, with the film thickness can be related to the
latent heat q and the change of the solid-liquid crystal
interfacial tensions:

~ T = 2Tc ( r si-r sn)/p qd. (6.7)

Now, we know from the contact angle experiments that rsi - rsn
Then, substituting typical values p=1.0 g/cm3,- r nt '
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q=2X103 JIg and r . =2X10-5J/m2, we find ~T=-0.06K for a 1000nl
at showing a reasonable agreement with the present observation.

The retardation for 5CB thin films between rubbed PVA
substrates is shown in Fig.6.21.
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FIG.6.2l. Temperature dependence of the retardation for SCE thin
films of various thicknesses sandwiched between rubbed PVA layers.
In contrast to the case of SiO substrates, the transition point
moves upward as the SCB thins, and the nematic remains to be
well ordered at temperatures above the clearing point (Tc=3S.3°C).

This time, the temperature dependence of the retardation
below Tc is almost independent of the film thickness; but above
Tc' they show a marked enhanced (averaged) order, strongly
depending on the film thickness. In contrast to the case of SiO
substrates, the nematic-isotropic transition temperature now
shifts upward by about 4X10-2 K while the thickness is reduced to
900 A. In view of the wetting property of the rubbed PVA as shown
in Section 6.1, this is also in reasonable agreement with the
Kelvin equation Eq.(6.7).
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Chapter 7

STABILITY OF

THE SURFACE-INDUCED ALIGNMENT

The alignment of a nematic director brought about by a
boundary is stabilized by some kind of "anisotropic force" that
exists at the interface. It is therefore quite natural to expect
that if the degree of stability, namely the anchoring strength,
could be measured, one would have direct information through which
the microscopic origin of the alignment might be glimpsed. Although
numerous attempts [1-32] have been made in this direction so far,
it is only recently that reliable measurements of the anchoring
strength have become possible due to the advent of appropriate
experimental techniques. Accordingly, the measurement and
theoretical interpretation of the anchoring strength is still in
its infancy, and there remain a number of unaddressed problems open
to future investigations.

In this section, we shall describe the current status of the
experimental investigations of the anchoring strength focusing on
the work of the present author. In view of the crucial role played
by the experimental techniques, conventional methods for measuring
the anchoring strength are first reviewed with an emphasis on their
reliability and precision. Next, we describe the "high electric
field technique (HEFT)," developed by the present author [29,30],
in detail. HEFT is an extremely simple, yet accurate method, which
allows a determination of not only the extrapolation length but the
entire functional form of the anisotropi~ part of the interfacial
tension of a nematic-wall interface. The results of application of
HEFT to rubbed polyvinylalcohol-nematic interface and obliquely
evaporated SiO-nematic interface are presented, showing that the
anchoring strength at the former interface is rather strong without
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marked temperature dependence, while that of the latter is much
smaller with a strong temperature-dependence. In particular, it is
shown that the anchoring strength at the nematic-SiO interface
exhibits a quasi-critical weakening toward the nematic-isotropic
transition temperature. Based on the thermodynamic arguments and
the Landau-de Gennes theory of the anchoring strength, it is argued
that the observed behavior can be ascribed to the "surface-induced
disordering transition" occurring at the nematic-SiO interface, in
consistent with the contact angle and the wall-induced
pretransitional birefringence experiments described in Chapter 6.
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7.1 Techniques for measuring the anchoring strength

As emphasized in Chapter 4, the concept of the orientational
anchoring strength has double facets, one of which is concerned
with the energetics of the nematic interface and the other with
its geometrical property (concerning the director profile).
Furthermore, since there are several geometrical properties which
are essentially connected with the nature of the interface, we can
in principle conceive quite a few methods for use in measuring the
anchoring strength. In Table 1, current techniques are classified
according to their measurement principles.

TABLE 7.1 Classification of techniques for measuring
the anchoring strength.

Indirect [7-131

Techniques
Surface Disclination [2-61

Geometry Type
Conflicting Surface
Alignment [15,181

- Direct
Wedge Cell [14,16,171

Type 1
Freedericksz Transition

[19-241
High Field [25-301

External-Field

Torque Measurement [31,321

First, we distinguish between an "indirect" [7-131 and a
"direct" [2-6,14-321 methods. The indirect method refers to a
technique which rests on the physico-chemical measurements of work
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of adhesion by means of, for example, traditional contact angle
experiments. The direct method, on the other hand, relies,
"literally," on the measurement of director configuration when the
nematic is subjected in one way or another to an external
curvature stress. The direct method is further categorized into
several sub-groups according to how the orientational torque is
brought about. For instance, the "high electric field technique
(HEFT)," with which we are concerned ourselves later, belongs to
the class of direct, external-field type, high field techniques.

Unfortunately, however, the applications of these techniques
have been often made without paying due attention to the
conditions which make these techniques really applicable.
Consequently, the experimental data found in the literature often
show a large scatter or incosistency, which is so large as to
force people to think that no concrete (more than an order-of-
magnitude estimate) information can be drawn from measurements of
the anchoring strength. One of the purposes of this chapter is to
show that this is not at all the case, and if an appropriate
technique is used under a controlled condition, data on the
anchoring strength can be a quite significant source of information
on which the nature of a nematic interface is faithfully projected
as originally conceived. Below, we shall review typical methods of
anchoring strength measurement with a special emphasis on the
conditions which are needed to be met for these techniques to be of
practical utility; for HEFT, see the following sections.

7.2.1 Indirect method

This type of technique consists in the comparison of the
interfacial tension when the director is aligned parallel or
perpendicular to the easy axis. As fully discussed in Chapter 4,
the interfacial tension is in general dependent on the orientation

7 - 4



of the director at the interface, and we can express it as r(n),
with n being the director at the dividing surface; in the case of
a planar interface between a rigid solid and a nematic liquid, the
dividing surface can be taken at an arbitrary position without
affecting the definition of the anchoring strength.

A. Principle
Based on the Rapini-Papoular type interfacial tension, i.e.

r(n) = r « + Llr(n)
1

= r « + - EaD-(n. ne)2),2
(7.1)

one readily obtains a formal expression of the anchoring energy:

Ea = 2[r(1[/2) - r r o i r , (7.2)

where r(1[/2) and reO) denote the interfacial tension when the
director is set parallel or perpendicular to the easy axis ne'
Therefore, it appears that if r(1[/2) and reO) are known, the
anchoring energy Ea is automatically calculated via Eq.(7.2).

The next step to follow is the evaluation of the relevant
interfacial tensions by means of the use of the Girifalco-Good-
Fowkes relation [see Section 5.1]. In order to simplify the
argument, let us here consider the case in which only the
dispersion force is acting between the solid and the nematic. In
the literature [7-13], it is tacitly assumed that the interfacial
tension r(n) can be written in the Girifalco-Good-Fowkes form,

(7.3)

even when the director n differs from the easy axis ne, where rS
and rL are the "surface tensions" of the solid and the nematic,
respectively, and the last term represents the work of adhesion at
an arbitrary director n [see the foot note on the next page].
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Then, putting Eq.(7.3) into Eq.(7.2), we find

(7.4)
When there exist contributions from other types of interactions,
they must be summed together to yield the anchoring energy.

This is the fundamental formula for the indirect physico-
chemical technique for estimating the anchoring energy at a solid-
nematic interface. The remarkable feature of this technique is
that the only ingredients of the theory are the surface tensions of
the solid and the nematic phases, when they exist independently.
When, in particular, the anisotropy of the nematic surface tension,
~rL=rL(1t/2)-rL(0), is small, Eq.(7.4) approximately reduces to

r (0)1/2 - r 1/2
L S tx r

rL(0)1/2 L·
E .....•..2
a (7.5)

This equation shows that when rL>rS' the nematic should align at
the solid surface in the same direction as at the free surface, and
when rL<rS' it should align in the perpendicular direction. This
is in its spirit similar to the Creagh and Kmetz empirical rule
described in Chapter 3.

Note: Strictly speaking, it is not allowed to regard the work of
adhesion for an arbitrary alignment as a work needed to
reversibly separate the solid and the nematic in which the
director is uniformly aligned. This follows from the very
definition of the easy axis; that is, a uniform alignment is
possible (except for some metastable orientation, if any), if
and only if nIl n e. So, the right-hand side of Eq.(7.3) is
n2t an equilibrium quantity, while the left-hand side is.
This pitfall results from the use of r(n), treating it as a
function which can be taken independently of the bulk state.
This point is often neglected in the literature.

7 - 6



Naemura [9,10] applied these formulas to a wide variety of
surfactant-coated substrates in contact with a nematic liquid
crystal, and favorably compared the resultant anchoring energies
(on the order of 10-5 J/m2) with those directly measured with the
Freedericksz technique (see below).

B. Consideration of validity and suggestions
The fundamental formula of this method, Eq.(7.4), is not a

rigorous thermodynamic formula to be generally satisfied by
interfacial tensions of nematics. But, as it stands, it is an
approximate equation based on a number of assumptions whose
validity should be carefully assessed.

One of the most serious shortcomings of this method is the use
of Girifalco-Good-Fowkes semi-empirical formula, which, as
mentioned in Section 5.1, can be used with certain confidence only
when an error of a few 10-3 J/m2 is permissible. As indicated
above, however, the anchoring energies are usually on the order of
10-5 J/m2. In view of these estimates, it might appear almost
senseless to calculate anchoring energies by means of such physico-
chemical formulas as Eqs.(7.4) and (7.5).

Nevertheless, the truth may not be this bad, because in
Eq.(7.4) the anchoring energy is given as a difference between two
formally similar terms. So, it is reasonable to expect that these
errors (resulting from the assumption underlying the Girifalco-
Good-Fowkes formalism) would cancel out to a large extent, leaving
much less error in the anchoring energy. However, analogous to the
interfacial tension itself, it is hardly possible to assess how
perfect this cancellation will be achieved. As pointed out in
Section 5.1, the Girifalco-Good-Fowkes theory neglects the
variations in structure from one interface to the other. In this
respect, Eq.(7.4) can be expected to in general lead to a better
result, if one estimates the first and the second terms for
interfaces at as similar as possible conditions. As regards
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Eq.(7.5), however, this condition can be restated as that it is
important to use a good value for the surface tension anisotropy
for the nematic free surface; this is not at all an easy work in
itself.

We should also point out another drawback of this method,
which is in a sense even more serious than that mentioned above.
If the director at the solid-nematic interface aligns in the same
direction as that at the nematic free surface, we obtain the
following inequality from Eqs.(7.4) and (7.5):

(7.6)

This indicates that the anchoring energy at any solid surface can
never exceed the value at the free surface. This is physically
unreasonable, as will become clear if we imagine a solid which
exerts a strong torque as to enhance the alignment at the free
surface. This paradox arises from the underlying assumption of the
Girifalco-Good-Fowkes theory which does not properly take account
of the anisotropic nature of the nematic liquid.

In view of all of these, the indirect physico-chemical
technique appears to be only of qualitative or heuristic
significance, as drawing an easy picture of the surface-induced
alignment in terms of a language familiar to surface scientists.
As a quantitative method for measuring anchoring strength, it is
almost fatal that we cannot estimate the uncertainty involved in
the resulting anchoring energies. On the other hand, as a theory
for predicting the alignment, it is still empirical containing too
many unjustfiable assumptions. This kind of technique would be
useful only after the nature of the anisotropic part of the
interfacial tension is fully understood.
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7.2.3 Direct methods of measuring the anchoring strength

This type of techniques measure, in one way or another, the
effect of solid substrate on the director profile near the
interface. In this context, the wall effect manifests itself only
when the director is deformed from its equilibrium configurations.
Since the nematic liquid crystal can be made to deform in many
ways and no liquid crystal is free from its boundary, every
possible deformed configuration of nematic director contains more
or less information as to the nature of the solid boundary. Thus,
corresponding to all of these phenomena, there can in principle be
innumerable methods for estimating the anchoring strength.

The most important characteristic of a good measurement method
is that it allows for accurate, unambiguous, and easy determination
of the property in question, preferably in wide variety of
different systems. The development of experimental techniques for
measuring the anchoring strength is actually a history of selecting
director configuration that meets these requirements. And, we have
now a rather large stock of such attempts as listed in Table I.

The earliest direct measurement of the anchoring energy was
performed by Kleman and Williams [2] through the measurement of the
width of a surface disclination line: The surface disclination line
they observed was an intersection between the substrate and a wall
sigularity of director orientation (like a Neel wall in
ferromagnets), and the region on the substrate where the director
is misoriented from the easy axis is limited to inside the
disclination line. The width of the surface disclination line is
determined by the compromise between the bulk and the surface
elastic energies; the former decreases as the disclination line
becomes thicker, while the latter increases. By an approximate
calculation, the optimum thickness h of the surface disclination
line has been expressed as [2,4-6],
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h - rr(dK/E )1/2a (7.7)

where d is the cell thickness, and K the Frank elastic constant; in
the case of a Neel wall, Ea and de are the azimuthal anchoring
energy and the extrapolation length, and in the case of a Bloch
wall, they corresponds to the polar anchorage. According to
Eq.(7.7), the anchoring energy and hence the extrapolation length
can be obtained, if the thickness of the surface disclination is
known for a cell of known thickness.

Such a surface disclination is shown to be thermodynamically
stable only when the cell thickness d is smaller than de. Hence,
h is in reality not greater than the extrapolation length.
Therefore, since the resolution of a polarizing microscope is at
best a few micrometers, quantitatively meaningful measurements can
be made, only when the anchoring energies are smaller than than
10-6 J/m2. As the anchoring energies of solid-nematic systems of
practical significance are mostly around 10-5 J/m2, this presents
a severe restriction on the applicability of this method.
Furthermore, since the production of surface disclination lines
cannot be satisfactorily controlled, this technique has not gained
a popurality as a practical method for measuring the anchoring
strength.

Other direct methods listed in Table 1 have been developed
more systematically to allow measurements in uniformly aligned
samples with wider range of anchoring conditions. Below, we shall
focus on two prototypical techniques, (1) wedge-cell technique, and
(2) Freedericksz technique as, respectively, representing the
geometry-type and the external field-type techniques.
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A. Characteristic lengths in a surface-aligned nematic layer under
an external filed [29]

In order to make a unified treatment of these techniques, it
is helpful to first consider the characteristic lengths governing
the director configuration in a surface-aligned nematic layer in
equilibrium under an external field.

Let us consider a nema-
tic layer confined in between

[Fig.7.1l. In view of later d electric field

a couple of solid substrates

application to the high elec-
tric field technique (HEFT),
we imagine that an external
electric field is applied
perpendicular to the solid-
nematic interface; however,

FIG.7.1. Director deformation under
an electric field.

the case of magnetic field
can be treated in completely the same manner. Further, we assume
that the deformation is essentially planar, that is, the director
is always lie in a plane determined by the easy axis and the
substrate normal.

Including the effect of electric field along with the surface
contribution from the lower and the upper substrates, the
thermodynamic potential of the system can be written, per unit
area, as

2
1 Idoo = 00 + -

+ dz +

(7.8)
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where K1 and K3 are the Frank elastic constants for splay and bend
deformations, e 1 and e 2 are the dielectric constants for field
directions parallel and perpendicular to the director,
respectively, and D denotes the electrical displacement, which is
shown to be constant throughout the nematic.
are the interfacial tensions for the lower and the upper solid-
nematic interfaces, each regarded as a function of the polar angle
of the director at the interface. Here, we consider the case of a
positive dielectric anisotropy, i.e., ~£;=£;1-£;2 >0, so that the
director is forced to align along the electric field. Except
for the presence of an electric field, this expression is
identical with what we have studied in Section 4.6. This is a
thermodynamically meaningful representation of the thermodynamic
potential in Gibbs' sense, if the interface director is
interpreted as the director one would have when the bulk director
configuration is extrapolated to the interface.

The equilibrium configuration of the director in the "bulk"
nematic is the one that minimizes the thermodynamic potential for
fixed boundary conditions. Then, applying the variational
calculus, we can obtain the Euler-Lagrange equation which specifies
the equilibrium profile:

d de
-[(K sin2e + K3COS2e)-dz 1 dz

d
= de 2(£;lCOS2e + £;2sin2e).

(7.9)
and the boundary condition at z=O and d,

= I ZoO' (7.10)

I z e d '
(7.10)
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These are the fundamental set of equations from which all the
properties of the director configuration (in the bulk) can be
deduced. A detailed analysis of these equations will be carried
out in the next section in relation to HEFT.

For the purpose of qualitative discussion, let us adopt the
one-constant approximation that the
dielectric anisotropy is small (£1' ..·....£2-£). Then, Eq.(7.9) can
be reduced to

(7.11)

This equation clearly shows that in an electric field with D, the
director tends to reorient along the field direction over the
distance dc given by

(7.12)

In other words, the region where the director is appreciably
different from the field direction is practically localized within
an interfacial layer up to dc from the solid surface. This is the
"electric coherence length" for the director. In the case of a
magnetic field,
dc=X CK/~X )1/2/H,

a coherence length can be similarly defined as
where H denotes the magnetic field. The

electric or magnetic coherence length is a characteristic length
of the system which describes the response of the nematic to these
external field.

In the absence of the external field, it is clear [from
Eq.C7.11)] that the director rotates with a uniform gradient
[SeCd)-SeCO) lId. Here, SeCO) and SeCd) are the angles of easy
axis at the lower and the upper boundaries, respectively; they are
not in general different from each other. And d is a measure how
strongly the system opposes to nonunifo~m rotations induced by,
say, an external field. This is another characteristic length of
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the system.
The final characteristic length of the system is the

extrapolation length de associated with the solid-nematic
This is of course a measure specifying how amenableinterface.

the interfacial orientation is to an external stimulus.
These characteristic lengths exhaust

independent parameters in the system having the dimension of
three

length.

all the

Depending on their relative magnitudes, the behavior of
the director is essentially determined. Owing to the concept of
these characteristic lengths, essential connections among various
techniques can be easily visualized, thereby enabling us to easily
appreciate the validity condition of each method.

B. Wedge-cell technique
This is a typical example of the geometry-type methods, which

introduces a necessary director deformations by means of geometry
of the cell configuration or such without the aid of an external
field.

Figure 7.2 shows the cell geometry used in the wedge-cell
technique, which was originally proposed by Riviere et at.[14]
and later refined by Barbero, et al.[17].

simple.
The principle of the

method is rather
Imagine that we are to mea-
sure the anchoring strength
at the lower interface with
an easy axis 8e(O). In this
technique, the upper sub-
strate must be subjected to
an appropriate surface treat-
ment so that it gives the
nematic an easy axis 8e(d)
which is distinct from that FIG.7.2. Cell geometry in ~he

wedge-cell technique.
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at the lower surface, with a sufficiently strong anchoring
strength in comparison with the anchoring energy to measure.
Then, both substrates are put into a "wedge" configuration
subtending a very small angle (on the order of 10-4 rad) so that
at each point, the configuration of the nematic director can be
well approximated by that in a usual parallel cell.

The conflicting boundary conditions at the solid-nematic
interface amounts to a so-called "hybrid" alignment in which a
spontaneous deformation of the director exists. Because of the
absence of an external field, the Euler-Lagrange equation
(including the boundary condition) can now be interpreted as a
statement of the continuity of the curvature stress along the z-
axis. In the one-constant approximation, the equilibrium director
profile is given by a linear function of z, as mentioned above.
Therefore, based on the geometrical meaning of the extrapolation
length, we can write the boundary condition at the lower interface
as

= (7.13)

Hence, the angle of the director at the lower surface is given by

(7.14)

This equation shows that if eo can be measured as a function of
the cell thickness d, we can in principle obtain de thereof.
Riviere, et al. [14] measured the angle &(0 as a function of d at
an interface between an obliquely evaporated SiO and 4-hexyl-4'-
cyanobiphenyl (6CB) [ee(0)-30 deg] from an optical reflectivity
experiment. And, they found the anchoring energy at about 4X10-6

J/m2.
In Eq. (7.14) , it should be strictly noted that the

extrapolation length and the cell thickness is appearing via
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As a result, an appreciable degree of change in the tilt
angle can be expected to occur only when d becomes as small as de'
This fact essentially limits the accuracy of the technique. Put
differently, this technique requires that the cell thickness be
reduced down to

d -- d e (7.15)

so as to assure a good accuracy. Therefore, it will be
experimentally difficult to measure an extrapolation length
smaller than 1 ~m; the upper bound for the anchoring energy would
therefore be of some around 10-5 J/m2.

Measurement of the tilt angle eo from an optical
reflectivity involves a rather complicated numerical fitting
procedure. Barbero, et al. [17] eliminated this process by
observing the "overall configuration of the director" by means of
the integrated optical phase retardation experiment. As already
noted in the former chapter, the phase difference R between the

through aordinary and the extraordinary rays after passing
nematic sample is expressed as

211 f:R = - ~n(e) dz,
A

(7.16)

where A is the wavelength of light and ~n(e) is the "effective"
birefringence of the nematic with the orientation angle e for a
light beam traversing along the z-axis.

Thus, substituting Eq.(7.14) into Eq.(7.16), we can
approximately express R in the following form:

(7.17)

where A and C are constants independent of d and de as defined by

de,
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Therefore, when R is plotted against the thickness d, a straight
line is obtained, from the intercept of which with the ordinate
axis, we can immediately find the extrapolation length. This
property provides us with a very easy and convincing method for
deducing the anchoring strength. In this case, too, the validity
of the technique is fundamentally governed by the relative
magnitude of the cell thickness and the extrapolation length.

A modification of the Riviere method, in which the easy axis
at the upper boundary is intentionally changed from one place to
the other in a parallel cell geometry has been developed by
Komitov and Petrov [15].

C. Freedericksz-transition technique
Another important variation of an experimental technique for

anchoring measurement comes from the use of an external field as
an agent to induce a desired director deformation.

As shown in Chapter 2, when the initial (uniform) orientation
of the nematic layer is strictly perpendicular to the applied
electric or magnetic field (we are considering the case of ~£>O
and ~X>O), the initial alignment remains to be stable up to a
well defined threshold field strength. And, above this threshold,
the director begins to rotate toward the field direction.

This phenomenon called the Freedericksz transition originates
from the competition between the torque exerted by the applied
field and that due to the cell boundary. So, it could soon be
suspected that the strength of the anchorage would have some
effect on the transition. This was indeed first studied by
Rapini-Papoular [19] as early as 1969 in relation to the wall-
effect on the magnetic field-induced Freedericksz transition.

As understandable from its origin, the Freedericksz
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transition is expected to occur (between strong anchoring
substrates, i.e. de-O), when the electric or magnetic coherence
length becomes almost comparable with the cell thickness:

(7.17)

Indeed, in combination with Eq.(7.12), this condition yields a
threshold voltage Vth - (K/~E.:)1/2 [Hth -..,(K/~X)1/2/d]; the
exact formulas for infinitely strong anchoring condition are given
by 1t(K/~E.:)1/2 and 1t(K/X)1/2/d.

Let us now imagine that both substrates are identical and
such that the anchorage is of finite strength with the
extrapolation length de. Then, in view of the obvious fact that
the nematic director can be freely rotated in the absence of
surface anchorage, it is naturally expected that the threshold
field should be reduced, as the anchorage weakens. Rapini and
Papoular [19] showed that even when the anchorage is not
infinitely strong, the director exhibits a Freedericksz transition
with the threshold field is given by

(7.18)

where HthO denotes the threshold field when the condition of
infinitely strong anchorage applies; the corresponding relation
for the threshold voltage follows immediately from the above, when
H is replaced by V. When expanded with respect to de/d,
Eq.(7.18) can be written in a more transparent form:

(7.19)

Hence we see, as expected, that as the anchoring weakens and/or
the cell thickness decreases, the threshold field decreases. So
that, if the threshold field is measured for samples of various
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thicknesses, the extrapolation length can be obtained. As in the
case of the wedge-cell technique, this equation also shows that an
accurate measurement is possible, only when the 'nematic layer
thickness is reduced down to the comparable level as the
extrapolation length. Then, in view of Eq.(7.17), the
Freedericksz transition technique can be characterized as

Naemura [20,22] observed the threshold field of the magnetic
field-induced Freedericksz transition for layers of MBBA, which
had been homeotropically aligned between substrates treated by
various surfactants. He obtained anchoring strengths on the order
of 10-6~10-5 J/m2 by using sample layers with a thickness ranging
from 10 ~m to 100 ~m. More recently, however, Yang and
Rosenblatt [23], and Rosenblatt [24] realized the importance of
using a thinner sample cell [to meet the condition in Eq.(7.20)]
in conjunction with a high magnetic field to make an accurate
measurement by means of this technique. They applied a magnetic
field of up to 100 kG to a few micrometers thick layer of MBBA,
homeotropically aligned between surfactant-treated substrates, and
found values of the anchoring energy about one order of magnitude
larger than that obtained by Naemura. The results of these studies
indeed show that it is crucial to meet the requirement expressed
in Eq.(7.20) for making reliable measurement of the anchoring
strength.

However, it should be pointed out that the first condition
of Eq.(7.20), is an auxiliary one resulting from the use of the
Freedericksz transition; so that as long as one uses this
technique it is automatically satisfied. On the other hand, the
latter condition is the true criterion which assures the validity
of this technique. Thus, it is expected that by relaxing the
condition d~dc' we can devise a more versatile method for measu-
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ring the anchoring strength. Actually, there have appeared seve-
ral attempts [27,28] to obtain the anchoring energy from the
analysis of the director deformations in the field region well
above the threshold of the Freedericksz transition. In this case,
there is no restrictions on the sample thickness, and one can
freely achieve the second criterion dc-de by using a sufficiently
strong field. This is the idea of the high field techniques
developed by Yang [27], and van Sprang and Aartsen [28]. In these
techniques, however, the director deformation is expressed by a
very complicated function of the field strength which implicitly
involves the anchoring strength. Consequently, a laborious multi-
variable numerical fitting procedures has to be performed to
extract the anchoring strength.

D. Summary and comparison with HEFT
In the case of a geometry type technique, the necessary

director deformation is brought about by a geometry factor
characterized by the length d. In the external field type
technique, it is specified by the coherence length dc. These
facts show that accurate direct measurements of the anchoring
strength entail that the source of the desired director
deformation should invariably have a characteristic length

Thiscomparable with the extrapolation length to be determined.
condition is directly of indirectly a decisive factor for
determining the performance of a particular technique.

The high electric field technique (HEFT) developed by the
present author [29] is a substantial sophistication of the
conventional high field techniques [27,28]. By intentionally
using a very "thick" sample, with a view to completely decoupling
the effect of d and de on the director configuration, it is made
possible to measure the anchoring strength in a simple, yet
unambiguous manner which does not require any numerical fitting
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procedure as in the conventional techniques. This is the
consequence of the fact that HEFT can be conceptually more
appropriately classified as a geometry-type technique rather than
as an external field-type; indeed, the reciprocal of the field
strength acts like the cell thickness in the wedge cell technique.
HEFT is reasonably insensitive to uncertainties both in material
parameters such as the elastic constants and in the cell
thickness, and is possible to determine the entire functional
form 0f r (e ) .

Finally, important characteristics of various "direct"
techniques are summarized in Table 2.

TABLE 7.2 Comparison of typical "direct" techniques
for measuring the anchoring strength

Wedge-cell Freedericksz
transition

High field HEFT

Anchorage polar both polar polar

500 nm 10 nm 10 nm 10 nm

Sample
Preparation

complicated complicated easy easy

Data
Analysis

easy easy complicated easy

Oblique
Alignment

possible in principle
possible

in principle
possible

possible

EaCmax): Largest anchoring energy measurable by the technique.
de(min): Smallest extrapolation length measurable.

7 - 21



7.2 The high electric field technique

7.2.1 Intuitive account of the principle

The high electric field technique (HEFT) provides us with a
means to accurate and straightforward method to measure the polar
anchoring strength at a solid-nematic interface. As it is based
on the very fundamental property of the Frank elastic theory, it
seems appropriate here to give an intuitive comprehensible account
of the measurement principle before going into the detailed
mathematical analysis of HEFT.

To illustrate the point, let us first consider a semi-
infinite nematic liquid crys-
tal bounded by a substrate

applied perpendicular to the
interface [see Fig.7.3]. We

o

I
I
I
I
~

~
~----

FIG.7.3. Director deformation
in an electric field; D is the
electrical displacement.

under an electric field

imagine that the nematic
assumes a uniform planar z
alignment in the absence of
the electric field. --- --- --- -- --In the presence of a 77////// // /////// ////finite electric field, the substrate
director tends to rotate
toward the field direction as one moves from the interface into
the bulk nematic. So, 8 (z) is always an decreasing function of
z, which (exponentially) approaches 0 as Z-+OO. The actual
director profile is determined by the condition of minimum
thermodynamic potential Q [cf. Eq.(7.8)], which results in the
Euler-Lagrange equation for 8(z) supplied with an appropriate
boundary condition expressing the torque balance at the interface,
Eqs.(7.9) and (7.10). For the present purpose, however, it is
sufficient to note that the integral in Eq.(7.8) can be
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transformed to the form DXJ[ 9 (1;)], if 1;=Dz is regarded as a
new variable of integration instead of z, where J[9C1;)] is a
functional of 9(1;) without an explicit dependence on D. As a
consequence, a universal function of 1;, 6(1;), must exist, with
which we can write 9(z) as

(7.21)

where de is a parameter which determines the angle at z=O, i.e.
90, and may in general be a function of D; as appreciable from
the form of Eq.(7.21) , de has a meaning of the length of
extrapolation to the point where 9=0. Equation (7.21) reveals
that the director profile satisfies a simple scaling property for
such transformations as D ~ kD and (z+de) ~ k-1(Z+de). HEFT
rests entirely on this property.

If the anchoring at the interface is of finite strength, 90
should deviate more and more from ge=rr/2 as the electric field
increases, and how fast it is gives a measure of the anchoring
strength. From Eq.(7.21), therefore, it is evident that the
measurement of the anchoring strength essentially reduces to the
determination of the extrapolation length de.

In HEFT, we also observe the optical phase retardation R
between the ordinary and the extraordinary rays which a light beam
suffers when traversing the nematic liquid crystal along the z
direction. For a light with wavelength ~, R is given by

2rr
(7.22)R =

where neff(9) is the effective refractive index for extraordinary
light when the director is tilted by 9 from the interface normal,
and no is the index of refraction for ordinary light. Since neff
approaches no as z~oo, the above integral remains finite even for
a semi-infinite system. Combining Eq.(7.21) with Eq.(7.22), we
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obtain

R = 1

n

~-1
dt:l]-- d8
d8

(7.23)

where a-1(8) is the inverse function of ~ This is thet:l.

fundamental equation of HEFT.
The important feature of Eq.(7.23) can be seen, if the

anchoring is assumed infinitely strong so that 80=rr/2. In this
case, the integral in Eq.(7.23) becomes a constant independent of
the field strength. Hence, when R is plotted against 1/0, a
straight line passing the origin should result. On the other
hand, when the anchoring is of finite strength, the increase of
80 with 0 also contributes. In order to see the behavior at such
low fields as to induce only a small deviation in 80, it is
convenient to expand the integral in Eq.(7.23) about 0=0:

1 2rr da-1 d801R = - [(RO )0 - 0 - (n - n )- - +
n t.. e 0 d80 dO 0=0

£ ], (7.24)

where (RO)o = lim RD, ne the refractive index for extraordinary
0-0

ray, and the residue £ is of the order of 03 when d(de)/dD
vanishes at 0=0 otherwise the order of 02. By differentiating
Eq.(7.21) with respect to 0, Eq.(7.24) reduces, up to Oth order in
D, to

1 (7.25)R = - (RO)0
n

where de(O=O) is written as de for simplicity. This shows that
when R is plotted against 1/0, the effect of a finite anchoring
strength emerges as a downward shift of the straight line from
that corresponding to the infinite anchoring strength.

In considering the realistic cases of finite thickness

7 - 24



samples, it is helpful to note that, even in the semi-infinite
case, the essential contribution to R comes from a small region
near the interface which extends over the electric coherence
length dc defined in Eq.(7.12). Therefore, a finite-thickness
liquid crystal held between a pair of substrates can be expected
to behave like a pair of semi-infinite systems, when the voltage
across the cell is well above the threshold voltage for the
Freedericksz transition, Vth=1I(K1/.6.£)1/2, so that the elastic
deformation is well localized near the substrates. Therefore, we
have

R(finite) =2XR(semi-infinite), when V » Vth.

Since the zero-field retardation of a planar cell with
thickness d is given by Ro=21Id(ne-no)/A, and D is proportional
to the product of the capacitance of the cell C and the applied
voltage, we finally obtain

R Io 2 de
d

when V » Vth, (7.26)=Ro CV ,

for a sandwich-type planar cell, where Io is a proportional
constant which depends only on the bulk parameters of the liquid
crystal and the cell geomet-

determine the extrapolation
length de from the plots
between R/Ro and l/CV. This

R/Ro

infinite strengthry. Thus, we can directly

illustrated in Fig.7.4. In

finite
strength

situation is schematically
,

practical utility, however,
the two somewhat conflicting

-2 de
d

r/cvorder that this method be of

conditions, V » Vth and
FIG.7.4. Schematic illustration of
R/Ro vs l/CV plot.
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1[/2-80«1, must be met at the same time. This is achieved by
choosing the cell thickness d in such a way that d»de·

As one may have noticed, we have so far made no use of the
torque balance equation at the interface; that is, we have only
worked with the bulk equation and have been naturally led to the
concept of the extrapolation length. This is what we have
experienced in Chapter 4, in developing the surface thermodynamics
of a nematic interface. From a purely macroscopic view point, the
extrapolation length de is a more fundamental concept than the
anchoring energy. The primary parameter that the present method
gives directly is the extrapolation length, not the anchoring
energy. This situation is completely analogous to the cases of
other "direct" techniques for measuring the anchoring strength.

7.2.3 Mathematical analysis of HEFT

In this section, we shall present a complete mathematical
formulation of HEFT following the route drawn in the previous
section. We will then examine the possible uncertainties involved
in the resulting extrapolation length and anisotropic part of the
interfacial tension due to errors in the material parameters and
the cell thickness.

A. Formulation
We begin with the expression of the thermodynamic potential

Eq.C7.8) for a nematic sample of thickness d. We assume that the
lower and the upper interfaces are identical, having the common
easy axis 8e and interfacial tension yC(0); so that, we have
yC(0)=YoC80)=YdC8d) and 80=8d.

Integrating the Euler-Lagrange equation Eq.(7.8) once, we
obtain

= const.
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Since the system under consideration is obviously symmetrical
about the mid-plane at z=d/2, the gradient of 8 disappears at
this point. Then substituting z=d/2 in the above, we can readily
evaluate the constant of integration to give

,

(7.27)
where a = ~£I£l and K=(K3-K1)/K1.
at the mid plane is denoted by 8m.

The director deformation in the nematic layer is here

The angle of the director

optically detected by way of the measurement of the optical phase
retardation R. In Eq.(7.22), where R is defined, the effective
refractive index for the extraordinary ray should be specifically
written as

(7.28)
where

(7.29)

Then, combining Eqs.(7.22), (7.27), and (7.28), we obtain

R

Ro

(7.30)
Here Ro=2nd(ne-no)/A is the value of the retardation of the cell
when the director assumes a uniform planar alignment.

As the applied voltage V is increased above the Freedericksz
threshold, the elastic deformation inside the nematic tends to
localize near the liquid crystal-wall interface. We assume here
that the cell thickness is chosen in such a way that there exists
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a substantial range of voltage satisfying

(7.31)

where dc is the electric coherence length [cf. Eq.(7.12)]. The
condition d»de insures that
the finiteness of the ancho-
ring strength does not in-
fluence the director configu-
ration at voltages around the E

CD
Q' =0.5

K=0.3
thethreshold voltage of

Freedericksz transition Vth
[=rr(K1/~£)1/2]. Further-
more, when d»dc holds, the
nematic
almost

director behaves 5 62 3 4

V / v,like a semi-infinite
contactliquid crystal in

FIG.7.S. Tilt angle at the mid-plane
of the cell as a function of the
applied voltage.

with the substrate. Then, in
this case, we can safely set
8m=0 in Eq.(7.30). Numerical
calculations of 8m based on Eq.(7.27) shows that when V exceeds
6Vth, 8m becomes smaller than 10-3 [see Fig.7.S].

In order to transform Eq.(7.30) to a more workable form, we
should note that the electrical displacement can be related to the
applied voltage by

D = CV/S, (7.32)

where C and S are the capacitance and the electrode area of the
nematic cell, respectively. Then with 8m=0, we can rewrite
Eq.(7.30) and the boundary condition Eq.(7.10) as follows:

(7.33)=
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R
= I( a, K, 11;80),

Ro CV
where

2_f80
I(a,K,1I;80)=

1[ 0
1-11+(1-11 )1/2

(7.34)
These constitute the fundamental set of equations for HEFT.

The linear relationship between Rand l/CV as noted in the
previous section can be derived by substituting

(7.35)

into Eq.(7.33), and expanding Eq.(7.34) up to first order in
(8-8e):

R k K sin28 + K cos28
= --->. - 2 1 e 3 e

R(O) CV Ead
k de= - - 2 -, (7.36)
CV d

where R(O) denotes the retardation in the absence of the electric
field [equal to Ro if 8e=1[/2], and k is a constant defined by

1-11+(1-11)1/2 •
(7.37)

Equation(7.36) has just the same form as Eq.(7.26), and shows that
when R/R(O) is plotted against 1/CV, a straight line results with
the intercept at -2de/d. The present equation is however not
restricted to the planar alignment, but equally applies to oblique
alignment. This is, in fact, an analogous situation to that we
encounter in the wedge cell technique in which R is linear in the
cell thickness. Hence there is a good correspondence between the
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cell thickness in the wedge cell technique and l/CV in HEFT.
The original set of equations, Eq.(7.33) and (7.34) also

provide a means to determine the functional form of r(80)
without assuming any a priori form as Eq.(7.3S). Imagine that all
the bulk parameters are known. Then, if the retardation and the
capacitance are know as functions of the voltage, Eq.(7.34)
uniquely defines the functional relation between 8 and V. Next,
using Eq.(7.33), we can obtain dr/d80• Finally, we must recall
that this procedure is valid only when the effect of finite cell
thickness and that of finite anchoring strength are substantially
decoupled by the use of a thick enough cell.

B. Estimation of systematic error
To examine how seriously the uncertainties in material

parameters affect the estimate for 80 and the resultant
interfacial tension, we note first the following approximate
formula:

1 3 1
X[1 + - ( -v - -- +

3 8 2-a

1
--)(1 - 2cos90 -2cos290)).
2+/C

(7.38)
Using the above equation, we can readily show that the error in
80 can be written as

1 oa
090 ••••••- -[---

3 (2-a)2
+

3
-ovlsin280
8

- 0 [RCV/R (0) k ]/sin eo.
(7.39)

This indicates that the error in 80 due to uncertainties in the
bulk parameters becomes most serious when 80""""rr /4. The absolute
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value of the error, however, remains at most a few degrees, even
when a's involve errors as large as 0.1. In particular, since v
itself is usually smaller than 0.2, this result shows that for the
present purpose, only a very crude value for v is needed.

7.3 Experimental determination of r(9o)

The functional form of the anisotropic part of the solid-
nematic interfacial tension has long been a matter of considerable
debate[33,34], since Rapini and Papoular [19] postulated a sine-
function dependence. However, no concrete experimental support
or objection has been presented, due largely to the technical
difficulty associated with directly determining the interfacial
tension when the interface director is substantially deviated from
the easy axis.

By applying HEFT, we have for the first time succeeded to
experimentally determine the complete functional form of the
interfacial tension for an interface between obliquely evaporated
SiO and 5CB. The result is mostly in support of the Rapini-
Papoular form, but there remains a small discrepancy which cannot
necessarily be attributed to experimental error, requiring the
introduction of higher order terms.

A. Experimental
The SiO film, which may also serve as an insulating layer,

were vacuum deposited to 1000 A thickness on a pair of NESA-coated
glass plates at an angle of 60 degrees from the substrate normal.
The liquid crystal 5CB assumed a uniform planar alignment in
between these substrates.

In HEFT, the choice of the cell thickness is crucial to
assure its validity as emphasized in the previous section. If we
take, for example, K1=5X10-12 Nand Ea=10-5 J/m2, the
extrapolation length becomes 0.5 ~m. So, in order to ensure a
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sUbstantial range of voltage satisfying d»dc»de, the cell
too thick a sample,thickness must be larger than 50 #m;

however, may cause an experimental difficulty in the case of a
planar cell, because the director relaxation near the Freedericksz
transition becomes increasingly slow with the cell thickness,
thereby making it difficult to establish a uniform distortion
throughout the nematic. here, we fabricated a sandwich-type cell
using a 50-#m-thick polyester spacer, and the actual cell

interference spectrum.
was measured to be 56± 1 #m from thethickness optical

In order to allow for simultaneous
capacitance measurements, the transparent electrodes were etched
in an appropriate shape to overlap only through the nematic liquid
with the area of about 7X7 mm2. The cell was vacuum-filled with
5CB in the nematic phase and then placed in an electric oven to

point (308.45 K).
the temperature at 0.230±0.001 K below the clearingmaintain

transmission-type
The retardation was measured with the same

can resolve a
retardation down

automatic
to 10-5

ellipsometer
rad. The

which
block diagram of the

A voltage
experimental system is shown in Fig.7.6.

(1033 Hz) of up to 150 Vrms
was applied to the cell, and
the retardation and the capa-
citance were measured as fun-
ctions of the voltage. Since
the critical slowing down was
quite significant near the
Freedericksz transition, the
voltage was, there, scanned
at a rate as low as 1mV/min.
In order to evaluate the effect of electronic current within the

sinusoidal

To lock-in amp. LC cell

FIG.7.6. Experimental arrangement
for retardation and capacitance
measurement.

nematic, the resistance of the cell was also monitored throughout
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the measurement. However, we did not notice any anomalous
behavior, and the resistance remained over 100 MQ even at the
highest voltage. The texture of the nematic liquid under high
electric fields was also examined with a polarizing microscope;
the field of view remained uniformly dark between crossed
polarizers, merely suggesting a quasi-homeotropic alignment along
the field direction. Because the power loss in the nematic is
presently at most 0.3 mW, the concomitant rise of the sample
temperature is expected to be less than 0.01 K for the present
cell geometry.

B. Results
In Fig.7.7 shown are the retardation and the capacitance as

functions of the applied voltage. A clear Freedericksz transition
occurred .at Vth=0.573±0.OO~ V, and the retardation decreased
steadily with the vol-

I

in the inset of the o 0 0 000 00 0

tage. However, as shown

1.0 --.-~ 0000 000

\\ ~oo
0.8 /'disappeared continuously rf. . y

at a finite voltage IX: 0.6 !'
p-o--o-o-J \

\
\.

'---......
•••• ~p ••

figure, the retardation

o0::.••...
0::

•0.01

around 100 V. This ~J 0.4
this .t3

•••

0.2

...
• .....o L...--.l_'--'---'--'...L..LJ-"".Po_-i

10 10'

indicates that at
voltage, the entire
nematic including boun-
dary layers was oriented
along the field direc-
tion. This is the first
experimental demonstration of
by several authors [35-37].

The change of the retardation was always reversible, and no

voltage
101

(V r.m.s.)

FIG.7.7. Typical changes of the
retardation R and the capacitance C
with the applied voltage.

the saturation transition predicted

hysteretic behavior was observed up to saturation within the
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experimental error. This implies that the anchoring energy
function is monotonically increasing function from 9o=n/2 to O.

The effect of finite anchoring strength can be clearly
visualized by plotting RCV/Ro versus the voltageapplied
[Fig.7.8J. Here, we see a plateau from 1.5 to 10 V, corresponding
to d»dc»de, followed by a
sharp decrease at higher vol-
tages. This shows that the
finite anchoring effect sets
in at around 10 V. In order
to determine the extrapola-
tion length, R/Ro is plotted
against 1/CV in Fig.7.9. A
good linear relation can be
observed as predicted by the
theory. The experimental

50
<..> 40..
To

30
0 20!r

:><..> 10!r

0
10-1

results are well reproduced
by a straight line intersec-
ting the ordinate axis at (-
2.30±0.05)XIO-3 from which 8XI0

2

we can obtain the extrapola-
tion length for the SiO-5CB
interface as

de = 65 ± 3 nm.

By using the value of the
splay constant, K1=2.4X10-12

N as determined from the
threshold voltage, the ancho-
ring energy is given by

E = (3.7 ± 0.2)XIO-5 J/m2.a

oa::
<,
a::
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showing the onset of the effect of
finite anchoring strength above 10 V.
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Then, following the procedure described in the former
section, we have obtained the anisotropic part of the interfacial

The error bars around the
experimental
tension as shown in Fig.7.10.

topoints represent possible fluctuations due
oCRCV/Rok), while the errors in material parameters shift all the
points uniformly up or down within the region surrounded by the
broken line. Fig.7.10Cb) was calculated by means of a graphical
integration of that shown in Ca). This is also the first

of the functional form of theexperimental determination
anisotropic interfacial tension at a solid-nematic interface.
These results show that r(90) as well as the anchoring energy
can be determined with a reasonable accuracy, in spite of somewhat

in the material parameters.
2 x 105 .--.----,---r----r---'-----,.--,.---,----r--,

large errors involved
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(b) FIG.7.l0.Anisotropic part
of the intefacial tension
for the SiO-5CB interface
at 0.23 K below the clear-
ing point. (a) The closed
circles are the experimen-
tal points; the error bars
show the effect of uncer-
tainty in RCV/Rok, and
errors in the material
parameters shift the ex-
perimental points uni-
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surrounded by the broken
lines.
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It is now of interest to compare r(90) as determined above
tensionwith the Landau-de Gennes form of the interfacial

Eq.(5.116). For this purpose, we examined the fit of the function
of the form

C7.40)

be noticed that,
to the experimental result, where e = 1[/2-80, First, it should

because the experimental dr 90) 1d8 shows a
maximum at a point which is definitely different from 1[/4, it is
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immediately clear that the first term of the above equation alone
is not enough to satisfactorily reproduce the measured result. In
Fig.7.11, two trial functions incorporating the second term are
shown along with the experimental results. For both functions,
the agreement with the experimental results seems satisfactory,
except that there exists a small but definite discrepancy which
cannot necessarily be attributed to experimental error. Anyway,
this result indicates that, at far as the SiO-SCB interface
interface is concerned, the Landau-de Gennes interfacial tension
gives a good representation of reality.

-N
E......•
~

o
o 0.5

f) x 2/1(.

FIG.7.l1. Second-order fitting of the anisotropic
part of the interfacial tension by the function of
the form, Y(e)=(Ea/2)sin2e + (E4/4)sin4e.
(a): Ea=3.9xlO-5J/m2, E4=-1.SxlO-5J/m2•
(b): Ea=4.lxlO-5J/m2, E4=-1.SxlO-SJ/m2•
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7.3 Temperature dependence of the anchoring strength:
Rubbed PYA and Obliquely evaporated SiO

Temperature-dependence of various interfacial properties
provides information that one can never reach from the measurement
at a fixed temperature alone. This section is devoted to
theoretical and experimental studies of the temperature-induced
variation of the anchoring strength.

At first, we will discuss the implication of the temperature-
dependence of the anchoring strength based on the thermodynamic
theory developed in Chapter 4. We present the experimental
results performed on the obliquely evaporated SiO-5CB and rubbed
polyvinylalcohol-5CB systems. Here, again, we find distinctive
differences between their temperature-induced behaviors; at the
SiO-5CB interface, the anchoring strength is relatively small and
undergoes an almost critical weakening as the clearing temperature
is approached, whereas at the polyvinylalcohol-5CB interface, it
is rather strong and exhibits only weak temperature dependence.

The critical exponent describing this anomalous increase near
Tc does not satisfy the thermodynamic criterion derived in Chapter
4; hence, it can not be regarded as a true critical behavior, but
should be understood to terminate somewhere closer to the clearing
point. Based on the Landau-de Gennes model, we show that the near
critical weakening is a manifestation of the surface-induced
disordering transition at the SiO-5CB interface via the
contribution of the order parameter inhomogeneity de(l). This is
in good accord with the results of contact angle and Wall-induced
pretransitional birefringence experiments, and also reveal the
utility of the Landau-de Gennes type phenomenological approach.
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7.3.1 Thermodynamic consequence of a temperature-dependent
anchoring strength: Energetistic vs entropic alignment

The present argument consists in the comparison of the
internal energy U and the entropy S of the system in the
orientationally deformed and undeformed (ground) states.
shortly illustrate how such an argument proceeds and

Let us
works by

ittaking a bulk nematic as an example. For the present purpose,
is convenient to work with the Helmholtz free energy F instead of
the thermodynamic potential. At fixed temperature, the Helmholtz
free energy of a given volume containing containing fixed number
of molecules seeks its minimum by appropriately changing the
director configuration etc. Writing the difference of a quantity
G between deformed and undeformed states as ~G, we have

~F = ~U - T~S. (7.41)

Now we consider the process in which the nematic is
transformed from a deformed state (II) with the Frank elastic
energy density fd to the undeformed state (I). Then, according to
Eq.(4.86), we obtain, in this case, an equation for the entropy
similar to Eq.(4.89) as

~S(II-+I) - A( aKq\ f (afd) dz,aT Ip aKq n
(7.42)

where q is summed from 1 through 3; in contrast to Eq.(4.89),
however, the Frank elastic constant Kq should be differentiated at
constant density p (since the transformation is occurring at
constant V and N). Because of the relation e=F-N~, we have upon
negligence of terms higher order than fd,

~F(II-+I) = - (7.43)

Putting Eqs.(7.42) and (7.43) into Eq.(7.41), we can express the
internal energy of the system as
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6U(II-+1) = - Vfd - A( aKq) f (afd) dz.
aT p aKq n

(7.44)

Now we have all the necessary ingredients for the present
discussion. An obvious statement as to the alignment in the bulk
nematic is that it occurs in such away that the Helmholtz free
energy takes a minimum value at fixed temperature, volume, and
orientational boundary condition. Then, according to Eq.(7.41),
in attaining the equilibrium state, either one of the following
four cases should happen: (1) 6U<0 and 6S)0, (2) 6U<0 and
6S<0, (3) 6U<0 and 6S)0, and (4) 6U<0 and 6S)0. It is
impossible that 6U<0 and 6S<0. Since the Frank constants are
decreasing functions of temperature (even at constant density),
Eqs. (7.42) and (7.44) show that in the case of a bulk nematic,
the second category of the above distinctions applies. This is an
indication that the stability of the uniform alignment of the
director derives from the internal energy part of the free energy,
while the entropic term disfavors it. This result has a deep
implication on the origin of the nematic order, and may be
interestingly compared with the elasticity in other condensed
media such as crystal solids and rubber materials. Furthermore,
this energetistic origin of the nematic order demands that any
theory which place too much emphasis on the steric repulsions
between nematic molecules would fail to appropriately explain the
temperature-induced behavior of the nematics.

Though much space has been spared for the discussion of bulk
properties, we are now in a position to turn our argument to the
interface problems. Let us consider a single component nematic in
contact with a rigid solid.. In conformity with the alignment at
SiO(60 ) and at rubbed PVA in question, we assume that the
alignment is planar and independent of temperature. We restrict
the attention to the polar anchorage. The Helmholtz free energy
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of the system may be written as

F = Fb + s r + r)1, (7.45)

where r denotes the adsorption of the nematic liquid with respect
to the dividing surface. As it is obviously impossible to
rigorously separate bulk and interfacial properties from a
macroscopic view point, we have to first set a basis on which the
origin of the stability of the surface-induced alignment may be
most appropriately discussed.

Here we chose to take the dividing surface at the point of
zero adsorption for the nematic phase, i.e. r=o, and consider how
the change of interfacial tension associated with the bulk
deformation is energetestic or entropic relative to the reference
bulk phase. From Eq.(7.45), we have (with this choice of the
dividing surface)

(7.46)

In terms of the surface entropy and the interfacial tension, the
surface excess internal energy is written as

(7.47)

where the superscript 0 denotes the zero adsorption surface. For
simplicity, we assume that the zero adsorption surface is
invariant. Then, from Eq.(4.140), we have

(7.48)

where the extrapolation length de is measured from the zero
adsorption surface, and rOo is the interfacial tension in the
absence of orientational deformation. Based on the Gibbs
equation for the interface between solid and ordinary fluid
[cf. Eq.(4.117)1, rroo can be shown to bea quantity of the
order of fd2; hence, it can be omitted. And from Eq.(4.206a), we

7 - 40



readily find for the case of a rigid solid-nematic interface,

= - K f (~ de) .
1 d aT K1 p

(7.49)

Combination of Eqs.(7.48) and (7.49) yields

(7.50)

Furthermore, because fd can be written, in terms of the strain at
the dividing surface Cop, as fd=K1(COp/de)2/2 [see Eq.(4.175)],
Eqs.(7.49) and (7.50) can be transformed to

COp 2 a~Sso(II-+I) = Ea
2 aT ,

2 2 a EA..~Us( 11-+1) = T COp
2 aT T .

(7.51)

(7.52)

These results show that in such an event that the anchoring energy
Ea decreases with temperature, the surface entropy (relative to
the zero adsorption surface) should decrease as the system is
brought from an orientationally deformed to undeformed state.
Similarly, the surface excess internal energy is also a function
which decreases as the system is transformed to the ground state.
So that, in this case, the surface alignment is stabilized by an
energetistic agent.

On the other hand, if the anchoring energy increase with
temperature, we can conclude from the above equations that the
variation in the surface entropy should be positive, thereby
contributing to decreasing the free energy of the total system.
The internal energy, however, may be positive or negative,
depending on the manner in which the anchoring energy increases
with temperature. Anyway, the dominant factor stabilizing the
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surface alignment is an entropic one in this case.
For example, if we consider the surface excluded volume

effect [38], [cf. the last term in Eq.(5.19)], the anchoring
energy is proportional to the absolute temperature T. Thus,
Eqs.(7.51) and (7.52) show that the contribution from the entropy
is positive, whereas that from the internal energy is zero. As
this mechanism of alignment take account of the effect of
anisotropic packing entropy, the above observation appears quite
understandable. In analogy with the bulk elasticity, this case
corresponds essentially to the "rubber elasticity."

As another extreme example, let us consider the macroscopic
van der Waals interactions. In this case, the resulting anchoring
energy is a more or less decreasing function of temperature.
Hence, only the internal energy can be effective in stabilizing
the surface-induced alignment.

As clear from these examples, a knowledge on the temperature
dependence of the anchoring strength provides us with an essential
insight into the surface process that stabilize the actual
alignment. Although Eqs.(7.51) and (7.52) hold only when the
anchoring energy is measured as a function temperature at constant
density, experiments under a constant pressure is still expected
to be a good source of information.

7.3.2 Anchoring strength at a rubbed PVA-5CB interface

In comparison with the case of evaporated 5iO and 5CB, the
results on which will be described below, this interface presents
much less fine structure in terms of its anchoring strength.
Within the experimental error, the polar anchorage at rubbed PVA-
5CB interface can be termed simply as an "infinitely strong
anchorage" over the temperature range very close to the nematic-
isotropic transition point. Accordingly, it is impossible to find
out the function form of the interfacial tension, as we have
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succeeded for SiO-SCB interface. And, unfortunately, there is thus
no room for the aforementioned thermodynamic relations to be
applied.

The preparation and the rubbing condition of the PVA film is
the same as that we used for contact angle measurement. And, in
accordance with the thickness criterion resulting from the HEFT,
we had fabricated a S4.4-pm-thick sandwich cell, in which nematic
SCB was vacuum-injected. The driving voltage was of sinusoidal
wave with the frequency of 7.43 kHz. This rather high frequency C
at least higher than that we used for the determination of rC8o)
at the evaporated SiO-SCB interface) was chosen to avoid the
transient motion of the director at high field, which has not been
taken into account in the "static" theory of HEFT and becomes
quite significant when the anchoring strength is large as in this
case. Because this point is of crucial importance for application
of HEFT to large anchoring strength, we shall add some more words
below.

The theory of HEFT described in Section 7.2.3 assumes the so
called "root-mean-square
oscillating electric field.
only a caricature of reality,
but there is always, however
small, a component which
changes in phase with the AC
field. As long as the effect
of oscillation to optical
output is linear in the field
strength, no final effect
does appear resulting in the
same relationship between the
retardation and the voltage.
However, at high field, where

response" of the director to an
Strictly speaking, however, it is

FIG.7.l2. Oscilloscope traces of the
driving sinusoidal voltage (1.033kHz,
80 Vrms) and the optical signal.
Note the asymmetry of the upper env-
elop of the optical signal.
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almost saturation of the director configuration occurs, the
oscillating director motion is no longer symmetrical about the
mean-field position, but is more efficient in the rebound motion
when the field crosses zero. So that, there appears a net optical
effect due to this deviation from the root-mean-square field value
[see Fig.7.121.

The R/Ro vs l/CV plots for the rubbed PVA-5CB system are
shown in Fig.7.13 at temperatures Tc-6.47 K and Tc-O.437 K.
Clearly, the plots show a good linearity as required by HEFT. The
intercept of the extrapolated curve pass almost perfectly through
the origin. The estimated error involved in the intercept value
is ±10-4. Then, the extrapolation lengths are

de = 0.0 ± 2 . 7 nm,
and

de = - 2 •0 ± 2 •7 nm , at T = Tc-O.437 K.

6

2

8XI02 • Tc- T = 6.47 ,oK
D Te- T = 0.437 K

0= 4
<,
a::

o~~--~--~--~~--~--~--~~--~~~~~
0.6 0.8 IXI09

\/CV (el)
02 0.4

FIG.7.13. R/Ro
SCB interface.
4.5 V.

vs l!CV plots for a rubbed PVA-
Plots are for voltages above
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The anchoring energies are therefore

-3 2Ea > 2.8X10 Jim, at T = Tc-0.437 K.

These are the largest value ever observed for the solid-nematic
interface. Although there is a systematic shift to negative side
in de value as temperature is raised, it is not clear at present
that it has something to do with the enhanced ordering at the
rubbed PVA-5CB interface.

7.3.3 Obliquely evaporated SiO-5CB interface [30]

In contrast to the rather simple result observed for rubbed
PVA-5CB interface, we have experienced a richer variety of
phenomenon which call for serious surface-scientific
interpretation. In particular, as the clearing point is
approached, the extrapolation length now shows an anomalous
increase, which is likely to be considered as a kind of critical
phenomenon.

By means of the thermodynamic and the Landau-de Gennes
theories of the nematic interface, it is actually shown not to be
the case. However, this can be favorably correlated with the
results of contact angle and wall-induced pretransitional
birefringence experiments (Chapter 6) if it is admitted that, at
the obliquely evaporated SiO-5CB interface, the surface-induced
disordering transition is occurring in the nematic phase. This
presents final clear evidence which corrobrates the distinction
between the rubbed and the obliquely evaporated surfaces.
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A. Experimental
The extrapolation length was measured according to the

procedure described previously, for a 5CB-SiO interface as a
function of temperature from the nematic-isotropic transition
point (Tc=35.3~) down to 5.2 K below Tc' SiO was vacuum-
evaporated onto a couple of ITO-coated glass plates at an angle of
60° from the substrate normal in the vacuum of 10-6 Torr. The
rate of deposition was about 0.9 nm/sec and the ultimate film
thickness was about 60 nm. To allow for the existence of
substantial voltage range satisfying the condition d»dc»de, we
prepared a rather thick sandwich-type cell by using a 50-#m-thick
polyester spacer. The actual thickness of the cell was measured
to be 54±1#m from the optical interference spectrum, prior to
filling the cell witn the liquid crystal.

The cell was vacuum-filled with the liquid crystal in the
nematic phase, and a good homogeneous alignment was confirmed with
a polarizing microscope. A sinusoidal voltage (7.43kHz) of up to
150 Vrms was applied step by step from zero volt, and the
retardation and the capacitance were measured and stored in a
micro-computer. The rate of voltage scan was set carefully at
each step (ranging from 1 mV/min near Vth to 5 V/min near the
maximum voltage) to ensure quasi-equilibrium condition.

The capacitance of the liquid crystal cell is obtained
directly by measuring the ratio between the applied voltage, which
is being scanned, and the out-of-phase component of the current
across the sample cell. The loss factor is also monitored by
taking the current component in phase with the applied voltage.

B. Results and some preliminary discussion
At all temperatures examined, we observed a well-defined

Freedericksz transition just as shown in Fig.7.7. Such well-
defined Freedericksz transitions are an indication of the fact
that the pretilt angle was always negligibly small at the 5CB
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600 evaporated SiO interface [39] . We derived the splay
elastic constants at various temperatures from the threshold
voltage of the Freedericksz transition. As noted before in
relation to the determination of rCSo), we observed a

"continuous" saturation transition at some temperatures near Tc.
In Fig.7.14, the thres-
hold voltage of satura- '.~. •E120 ~
tion transition Vsat is >

plotted as a function of 100 -a.\ ..
temperature. Firstly, >

the of the 80 Q.)occurrence 0>
c

continuous saturation • 0

\ 60 >
transition indicates,

-0

according to Sluckin and 40 0• .s:
\ In

Poniewierski [37 ], that Q.)~
20 .s::

the Landau-de Gennes

Eq.C5.116) has a nega- 0.5

-

FIG.7.14. Threshold
L--_--L.._--'- __ -'---_---'--_--' 0 vol tage for the

o saturation tran-
sition plotted as
a function of tem-
perature.

0.4 0.3 0.2 0.1
surface potential

tive coefficient for the
fourth order term, or
equivalently negative E4 in Eq.(7.40).

Te - T ( K)

Secondly, the fact that
the threshold voltage increases with the decrease in temperature
shows that the anchoring energy is also increasing almost in
proportion to Vsat [35].

The extrapolation length was calculated at each temperature
from R/Ro vs l/CV plots by performing a linear least-squares
fitting based on Eq.(7.26). Shown in Fig.7.15 are the R/Ro vs
l/CV plots (V > 4.8 Vrms) corresponding to the lowest and the
highest temperatures of measurement. Clearly, the linearity of
both plots is remarkably good, while we can see an inflection for
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the latter plot corres-
ponding to the satura- axlo2

tion transition men-
tioned above. The solid

6lines represent the
best-fit straight lines,
and the extrapolation
lengths have been de-
duced from their inter- 2

cepts with the ordinate
axis. The extrapolation
lengths so obtained are
depicted Fig.7.16in
against temperature and
are also tabulated in
Table 7.3 together with
the splay elastic con-
stant Kl calculated from
Vth, the birefringence
6n=ne -no' and
anchoring energy

the
=

Kl/de·
As discernible in

Fig.7.16, the tempera-
ture dependence of the
extrapolation length

distinctshows quite
features depending on
the range of tempera-
ture. Up to Tc-l K, the
extrapolation length is
rather small around 30

o! 4
<,
a::

• Tc- T = 5.15 K

o Tc- T = 0.043 K

a

b

o~~~~--~--~~--~--~--~--~~~~ __~
0.6 o.a Ix 109

II CV (C-I)
0.4

FIG.7.1S. R/Ro vs l/CV plots observed at (a)
5.15 K and (b) 0.043 K below Tc. The solid lines
are the best-fit straight lines determined
by the least squares method applied to points
above 4.8 V.
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nm and stays practically constant. However, at temperatures near
the nematic-isotropic transition point, de is seen to undergo a
nearly diverging increase toward Tc' and at 0.043 K below Tc it
becomes six times as large as the values at lower temperatures,
thereby weakening the anchoring strength.

TABLE 7.3. Results for the anchoring strength and some
other bulk parameters.

T -T Extrapolation Anchoring Birefringence Splayc
(K) length energy const.

(nm) 00-5 J/m2) 00-12 N)

5.15 35±5 13.7±2.0 0.156 4.66
3.92 31±7 14.8±3.6 0.149 4.28
3.00 28±7 15.2±3.7 0.143 3.95
2.41 27±7 14.7±4.1 0.139 3.71
1.77 37±3 9.2±0.8 0.133 3.41
1.42 42±4 7.6±0.7 0.130 3.23
1.17 45±3 6.8±0.5 0.127 3.07
0.864 49±3 6.8±0.4 0.123 2.88
0.645 54±3 5.8±0.2 0.119 2.71
0.431 63±3 5.0±0.2 0.115 2.53
0.245 83±3 2.9±0.1 0.110 2.33
0.114 117±3 1.85±0.005 0.106 2.17
0.043 183±3 1.13±0.003 0.104 2.06
0 0.102a 1.97a

a Values extrapolated to Tc.
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In order to show up the details near Tc' the extrapolation
length is re-plotted versus the logarithm of Tc-T in Fig.7.17; the
solid line, also shown in the figure, represents the best-fit
curve, found among the set of critical functions of the form

(7.53)

with A=O, B=3.41 nm and v=-0.4S.
energy is found to be fitted by

Similarly, the anchoring

(7.54)

The present results for the polar anchoring strength at the
SCB-SiO interface might be most comparable with the results of
Faetti, ~t ~1.[32] who measured the azimuthal anchoring energy for
the same interface. The anchoring energies they found, however,
are nearly one order smaller than the present ones, but they also
observed a nearly critical weakening of the anchoring strength
toward the clearing temperature. For the sake of comparison, we
have calculated the
anchorage by using the

extrapo].aj::i.QI)_ungj:h for -±'~e a_~imuthal
2 x HffT"'TTT"l---.--,----,rrn-rr-r-.----rrTTT ••. ..--.---, 2X103

and at

I,e

'/•I
I-best-fit equation for

the -E
c

anchoring energies
given in Ref. 32; the
absolute value of the
twist constant at a tem-
perature just below Tc
has been taken from ..

-0

Bunning, ~t ~l. [40] ,
their values

lower temperatures were
calculated following the
results of Faetti, ~t

o 010"1lt.LJ....1'--'-L-..1-..l.J.7;~..L-1.--L-IJ.J.O_.y.1 .1...I-J....L-L---..l
10
_
2

(K)

E
c

-- - ----

FIG.7.l7. Extrapolation length for the
azimuthal anchorageat the 5CB-SiO inter-
face(solid line), calculated by using
the results of Faetti et al.
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gl.[32]. In Fig.7.17, the azimuthal extrapolation length thus
obtained is shown as a function of temperature together with the
present result. Despite very different values of de'S for polar
and azimuthal anchorages, we can see that the qualitative feature
of the temperature dependence is quite similar for both cases.
This fact strongly suggests that a single mechanism, regardless of
the mode of anchorage, is indeed responsible for the temperature-
induced softening of the surface alignment.

C. Insights from Thermodynamics
By substituting the fitted expression [Eq.(7.54)] into the

thermodynamic relation between the surface entropy SS and the
curvature stress Lp [Eq.(4.206a) and see also Eq.(7.51)], we
obtain

Making use of the strain COp at the interface, we can rewrite the
above to give

(J/m2·K)

(7.56)
Therefore, at the temperature Tc-T=O.Ol K, the surface entropy
increases from its ground state by 1.3X10-4 J/m2XK, when COp=l.
In view of the magnitude of the n-i transition entropy of 5CB as
estimated from the pretransitional experiments [41], i.e., 5X103
J/m3XK, the above value of the entropy increase is equivalent to
a situation that a 30-nm-thick surface layer of the nematic is
transformed from the nematic to the isotropic state. This is
indeed a very large change, which may be readily detected in
optical experiments.

Equation (7.56) shows that, as the curvature stress is
applied, the ordering in the nematic liquid deteriorates faster in
the interfacial region than in the bulk phase. And, moreover, the
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degree of deterioration should diverge as T goes to Tc for any
finite value of COp. This is obviously impossible to occur in real
experiments. The thermodynamic inequality derived in Section 4.9
indeed requires that, even when the extrapolation length does
diverge, the critical exponent governing the divergence should be
(-1, cf. Eq.(4.215). The exponent found for the present SiO-5CB
interface -0.45 does not meet this requirement. So, the observed
trend cannot be regarded as a manifestation of a real critical
behavior of the anchoring strength, but we should understand that
the apparent critical behavior terminates somewhere closer to Tc
or there is a point of cross over to a more singular behavior.

Finally, by an application of Eqs.(7.51) and (7.52), it is
shown that the increase in the surface excess internal energy
associated with the transformation from the ground state (I) to an
excited state (II) with COp~O is given by

2
~Us (I-+II) COp Ea + T~Ss (1-+1I) .

2
(7.57)

This is positive and is an even more strongly increasing function
of Cop than the surface excess entropy. And it also exhibits a
quasi-critical increase toward Tc' in sharp contrast with
r(I-+II)=(Cop2/2)Ea which tends to vanish as Tc is approached.
These results clearly indicate that the temperature-induced
weakening of the anchoring strength at the 5CB-SiO interface is
not occurring simply because the anisotropic surface interaction,
which aligns the nematic director, reduces near Tc' but because
the entropic contribution gets to compensate the internal energy
part more efficiently as Tc is approached. That is, in the
vicinity of Tc' the rotational barrier due to the anisotropic
surface interaction is effectively lowered by the entropy increase
associated with the rotation of the nematic director. This result
clearly signifies the important role that the ordered structure of
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the nematic interface is playing in determining the temperature
dependence of the anchoring strength at this interface.

D. Calculations based on the Landau-de Gennes model
In order to make a more quantitative analysis of the above

experimental result, a model calculation based on the Landau-de
Gennes theory of the anchoring strength (Section 5.6) has been
performed.

As shown in Eq.(5.169), the extrapolation length is comprised
of two contributions of distinct origin, de(l) and de(2): the
former is the part which comes from the spatial inhomogeneity of
the order parameter near the interface, and the latter is a term
connected with the direct solid-nematic interaction. Both of them
are given as a function of the bulk and the surface order
parameters, qb and qo.

In the present experiment, the reduced bulk order parameter
qb is directly given at each temperature by the birefringence
normalized at the value of the clearing point:

(7.58)

In particular, this order parameter can be well approximated by an
expression (as used already in the calculation in Section 5.6),

(7.59)

with It is worth noting that this
representation of the bulk order parameter follows from the
assumption that the coherence length of the order parameter in the
nematic phase be written as

(7.60)
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So that, it is clear that T~
designates temperaturea

where the coherence length
diverge and hence the nematic
order ceases to be stable.

)I(The present value of Tn-Tc is
about twice as large as that
from the ordinary Landau-de
Gennes theory.

In view of the very
theuniversal nature of

surface excluded volume
effect and the van der Waals
interaction, we have assumed

(7.61)
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FIG.7.18. Temperature dependence of the
reduced bulk-order parameter. The solid
line is calculated via Eq.(7.59).

for the interfacial interaction potential. As regards the order-
disorder term in the interaction potential, we used the quadratic
form

as before.
Figure.7.19 displays the theoretical curve for de fitted

with the experiment. The corresponding temperature dependence of
the surface order parameter is shown in Fig.7.20. Although only a
curve with uo=l.S and g=O.09 is shown in Fig.7.19 to avoid
unnecessary complication, curves with uo in a rather wide range
including O.9i u i2 can reproduce the experimental results equally
well, provided g, K/g2, and, among others, ~ c are chosen
appropriately; note, however, that no satisfactory fit can be
attained by using a critical curve with g=O and u>l. As
understandable from Fig.S.21, as Uo is made larger, a smaller ~c
and a larger g have to be chosen to achieve a quantitative
agreement with the experiment. However, since ~c is known to be
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about 10 nm for 5CB
[41], curves with uo>2
can hardly be regarded
realistic. The lower
curve in Fig.7.19 is
representing the contri-
bution from de(2), and
shows that its effect is
relatively unimportant
near Tc compared with
that of de(1), though
the presence of de(2) is
obviously crucial at
lower temperatures. This
suggests that the nearly
critical weakening of
the polar anchoring
strength is essentially
effected by the order
parameter inhomogeneity
coupled with the
surface-induced orienta-
tional disordering
the interface.

Because of the non-

at

critical nature of those
theoretical curves which
fit the experiment, the
corresponding surface
order parameter always
remains non-zero even at
the clearing tempera-

c
o

u·1.5 • g. 0.09

~e·9.7nm
160 ~

..
-0

80 "5

40

I, - T

FIG.7.l9. Comparison of the theory with the
experiment. The upper line represents the extra-
polation length de obtained by assuming uo=1.5
g=O.09.

0.4

To - T (K)

FIG.7.20. Temperature dependence of the surface
order parameterfor those surface potential
parameters which well reproduce the experimental
results of the extrapolation length: (a) uo=2,
g=O.15, (b) uo=1.5, g=O.09, (c) uo=l.O, g=O.
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ture. This is in accord with the result of Faetti, ~t ~1~[32] and
is also in qualitative agreement with the contact angle
experiments [see Section 6.1]. In particular, the remarkable
feature of those curves shown in Fig.7.20 is that the surface
order parameter falls in a small region around 0.15 at the
clearing temperature, in spite of rather large variations in Uo

and g. Furthermore, as 0c=0.27 according to the literature [41],
the above results indicates that 00•.....0.04 at Tc. And for the
order parameter in the isotropic phase (just above Tc), we find
OOn=O.Ol. These values are in good agreement with those predicted
from the contact angle and the wall-induced pretransitional
birefringence experiments in Chapter 6.
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Chapter a

CONCLUSION

In this thesis, we have made an attempt to develop a
phenomenological framework for the interfacial orientational
properties of nematic liquid crystals based on thermodynamic and
statistical mechanical approaches. The validity of the framework
was successfully tested against the results of various
observations of novel orientational phenomena occurring at the
interface between solid substrate and a nematic liquid crystal. As
a result, it was in particular revealed that the mechanisms of
surface-induced alignment of nematics on rubbed polymer surface
and on obliquely evaporated SiO are dramatically different from
each other, in contrast to the conventional expectations.

The interfacial phenomena we have dealt with here are
extremely sensitive to the orientational properties of substrate,
while allowing for quantitative analysis based on the
phenomenological framework. At present, such subtle anisotropic
properties of a solid surface is very difficult to probe, despite
their importance in preparation of oriented organic films such as
LB films. We therefore expect that the present set of the
interfacial phenomena and the thermodynamic and statistical
me6hanical framework will serve as a unique analytical tool
for solid surfaces.

Below we shall summarize the main results of the present
study in detail, together with some future perspectives.

In Chapter 4, we have carried out a rigorous extension of the
Gibbs thermodynamics of ordinary liquid interfaces to encompass
nematic systems. The uniaxial anisotropy of nematics was fully
taken into account based on the Frank theory of curvature
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elasticity by adopting the director in the bulk phase as the
orientational thermodynamic variable. We showed that the
orientational property of the nematic interface can be completely
specified by the pretilt angle and the anchoring strength. Though
this is apparently the same situation as in the heuristic
formalism due to Rapini and Papoular, the limitation and the
physical basis of their formalism were clarified, and an
alternative definition of the anchoring strength has been
introduced. Based on the generalized Gibbs equation, the
orientational effects on the adsorption, surface entropy, and
surface energy at the nematic interface were elucidated for the
first time. This shows that any phenomenological description of a
nematic interface should involve the influences of the ordinary
surface thermodynamic variables. So that, it is equally important
and meaningful to study not only the direct orientational
phenomena but such indirect surface effects. Finally, this
interplay between the macroscopic orientation and the adsorption
and the surface entropy has also an interesting implication into
the preparation of organic thin films; that is, if a liquid
crystal is used as a substrate for a spread monolayer, the
pressure and the orientational as well as translational structure
may be controlled by the orientation of nematic director.

In Chapter 5, rigorous statistical mechanical expressions for
the interfacial tension and the anchoring strength were derived
for an interface between hard solid wall and nematic, by making
use of the thermodynamic definition of the anchoring strength.
Though not practically useful, they apparently manifested the
importance of interfacial perturbation of liquid crystalline
structure. Especially, by way of a variation principle satisfied
by the anchoring strength, it was shown that the anchoring
strength diminishes as the orientational order degrades near the
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interface. By applying a simple mean-field argument to the
interfacial tension, we suggested that the contact angle of a
nematic droplet resting at the interface between its isotropic
phase and the substrate would be enormously sensitive to the
anisotropic property of the substrate. In view of the
significance of liquid structure near the interface, we developed
a Landau-de Gennes type order parameter theory of the nematic
interface. The interfacial tension, contact angle, and anchoring
strength were obtained as an explicit function of the surface
order parameter. An expression for the wall-induced
pretransitional birefringence was also derived. It was especially
shown that these properties are strongly dependent on the value of
the surface order parameter, yet in a mutually complementary
manner.

In Chapter 6, the results of the experimental observations of
the contact angle at the nematic-isotropic-substrate three-phase
line of contact, the wall-induced pretransitional birefringence,
and the nematic-isotropic transitions in thin nematic films were
presented. In particular, the contact angle was observed to
drastically change according to the nature of the aligning
substrate. The rubbed surfaces were found to invariably induce an
acute contact angle or in some cases even complete wetting for the
nematic, thereby showing that the ordered nematic state is more
stable of these surfaces than the isotropic state. On the
contrary, the substrates coated with an obliquely evaporated SiO
tended to induce an obtuse angle for the nematic, indicating the
prevalence of just the opposite situation. In terms of the
Landau-de Gennes phenomenological theory, this observation demands
that the order parameter at the SiO surface be appreciably smaller
than in the bulk, whereas at the rubbed surface, it should be
rather enhanced. These predictions were indeed confirmed (at
least partially) by the pretransitional and thin film experiments.
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In Chapter 7, the high electric field technique (HEFT)
developed by the present author for measuring the anchoring
strength was described. Next, we presented the results of the
anchoring strengths measurement for SCB on the rubbed
polyvinylalcohol (PVA) and on the obliquely evaporated SiO
substrates. The anchoring strength at the rubbed PYA substrate
was found to be extremely large with negligible temperature
dependence. However, at the SiO substrate, the anchoring strength
was more than one order weaker, and furthermore showed a quasi-
critical weakening as the temperature approached the nematic-
isotropic transition point. Although the possibility of a true
critical behavior was ruled out by thermodynamic criterion derived
in Chapter 4, it could be interpreted as an indication of the
thermal degradation of the surface order parameter on the basis of
the Landau-de Gennes theory.

The results of the above four kinds of experiments could be
consistently explained within the present phenomenological
framework for both rubbed PYA and evaporated SiO substrates. The
estimated phenomenological parameters qualitatively indicate that
the effect of the evaporated SiO is almost exclusively to destroy
the orientational order in the nematic phase, while at the rubbed
PYA, strong ordering and disordering effects do coexist as
manifested by the finiteness of the nematic contact angle. The
SiO substrate possesses the disordering nature quite independent
of whether or not the nematic is uniformly aligned. However, the
strong interaction across the rubbed PYA and the nematic is
always accompanied by the rubbing process. It appears quite
reasonable that such a crude process as rubbing leaves both
ordering and disordering structure on the rubbed film. Although
the phenomenological approach based on macroscopic observation
tell nothing more into the microscopic origins of these effects,
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the above
rubbed and
other.

results may be sufficient to illuminate how far
the obliquely evaporated substrates are from

the
each

In an accepted phenomenology such as hydrodynamics or elastic
continuum theory, the basic equations set a universal basis for
all relevant phenomena, while the specificity of a particular
system can be taken care of via a few adjustable parameters. The
present phenomenological approach is still too crude to claim to
reach such level. However, the origin of success, if it can be so
judged, may lie in the fact that the nematic-isotropic transition
is of weakly first order. In sufficient vicinity of the
transition temperature, the behavior of the nematic is almost
governed by the orientational order parameter, while other
variables becomes less significant. So, it is essentially the
same situation with the universality class associated with
continuous phase transitions. In this respect, the present
framework can not by pass the pitfall of the Landau theory. Then,
it will lose its utility at points far from the transition point.
There, we should search for another universal structure to
construct an acceptable phenomenology.
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Appendix I

PRECISION TEMPERATURE-CONTROLLED

MICROSCOPE

As mentioned in Chapter 2, texture observations with a
polarizing microscope is one of the fundamental and often decisive
steps for the identification of various phases of liquid crystals
and the study of their internal structures. The properties of
liquid crystals are strongly temperature-dependent; in the case of
SCB, indeed, the birefringence ~n changes from 0.16 to 0.1 as the
temperature is raised from 5 K below the clearing point to just
beneath.
pOints.

And it becomes even more so near the phase transition
Therefore, in the study of texture near the transition

point and the phenomena associated with the transition itself,
i.e., nucleation and growth of new phase, critical fluctuations,
etc., it becomes quite important to strictly control the sample
temperature.

Here described are the design and the performance of the
precision temperature-controlled microscope, which has been in
extensive use in my laboratory for observing wide variety of
liquid crystal textures in the vicinity of the phase transition

. t*pOln . The temperature-controlled sample holder for
ellipsometric measurements (Chapters 6 and 7) has also been
designed on much the same working principles.

The present temperature-controlled microscope is a modern
version of Lehmann's "oil-bath microscope," which literally means
a microscope immersed in an oil bath.
temperature fluctuations as small

Here, in order to achieve a
as 10-3 K with lesser

*-----------------------------------------------------------------H. Yokoyama, S. Kobayashi, and H. Kamei, Rev. Sci. Instrum.
54, 611(1983).
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temperature gradient over the liquid crystal cell, we have
installed almost all the parts of a polarizing microscope, i .e. ,

obj ective, polarizer, analyzer, etc., together with the sample
cell in a multi-shielded temperature-controlled electric oven as
shown in Fig.A.l. Enclosing virtually all the structure of the
polarizing microscope in an oven eliminates the difficulty
associated with the short working distance between the objective
lens and the sample, which becomes hazardous to realize a good
thermal insulation of the sample from the environment.

In Fig.A.l shown is the cross-sectional view of the
microscope, and Fig.A.2 gives the perspective view of the optics
part. The oven consists of three copper enclosures and a copper
block in which a sample is placed. The outer most copper enclosure
is thermally insulated from the surroundings with foamed
polystyrene, and is aimed to reduce the possible temperature
gradient over the next copper
enclosure. The two inner
copper enclosures are ther-
mally insulated from each
other except at the side
wall, where the temperature

Eyepiece----.
Analyzer~ !:6J===r-X,Y,Z translator

Objec

;::::~C

tive c::= t..----H

~ ~ r/. I-
tI- I!I \: lG\
~ '0 r'l I--~

~
T

er

r~ I-

~
~ If I,

~Iows

opper
enclosures

eater

is sensed by a thermistor and
is fed to an electric circuit

Sample
slot

Controlling
thermistor

for regulating the power sup- hermocouple
Polariz

ply to the heating wires Teflon rod
Cold filte

wound around the second inner
enclosure. This rather loca-
lized thermal contact between
the inner most and the next
enclosures is known to be
very effective in reducing
the temperature gradients on

Mirror

Glass
wind nsulator

10 cm

FIG.A.I. The cross-sectional view of
the temperture-controlled microscope.
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/z-translation
screw

copper block

FIG.A.2. Optical
structure inside
the electric oven.

the JIcinner most enclosure. A copper block of about 200(5X5X8)
cm3 is placed inside the enclosure, while they are thermally
insulated from each other by means of two Teflon rods of 3-cm dia-
meter supporting the block. The large thermal inertia and high
thermal conductivity ensure good temperature stability and homoge-
neity on the block. Since thermistors, though they are quite
sensitive, are not suitable for absolute temperature measurements,
the temperature of the copper block is simultaneously monitored
with a thermistor and a copper-constantan thermocouple.

An objective, a polarizer, and a reflecting mirror were
installed in the enclosure together with the copper block
(Fig.A.2). The vertical position of the objective can be changed
with a screw attached to the objective holder. An eyepiece was
mounted in a holder which is movable in X-, y-, and z-directions.
Illuminating light is introduced through a cold filter and glass
windows in
;-----------------------------------------------------------------R.D. Cutkosky and B.F. Field, IEEE Trans. Instrum. Meas.
23, 295(1974).
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front of the mirror, and observations are made through glass
The cold filterwindows between the objective and the eye-piece.

cuts off the thermal radiation from the light source, thereby
preventing unwanted heating of the copper block. The whole
apparatus is operated in a room air-conditioned to 25!1 K.

The electric circuits used in the present apparatus are
similar to those employed by Grubic and Wurz*, which utilized an
AC-Wheatstone bridge for measuring the resistance of a thermistor.
The thermistors for controlling and monitoring purposes are of
bead-type (1.8 mm in diameter) having the resistance 3 kQ at 100
C and 150 kQ at 0 C. The AC-Wheatstone bridge was formed with
the thermistor and metal film resistors with a temperature-

This temperature coefficient iscoefficient as small as 5 ppm/K.
sufficiently small to make it meaningful to detect a millidegree
difference in sample temperature, provided the resistors are
thermostated to !1 K.
in order for the self-heating effect in thermistors to be

The driving AC voltage is limited to 0.3 V

negligible. The temperature setting is changed by varying the
And the unbalance signal fromresistance in the bridge circuit.

the bridge is lead to a lock-in amplifier, whose output is further
fed to a proportional-integral (PI) controller driving the
electric heater.

Figure A.3 shows a
nematic schlieren tex-
ture observed with the
present microscope at
0.01 K below the temper-
ature (35.2 C) where the
nematic phase first ap-
peared on cooling from
the isotropic phase of FIG.A.3. Nematic schlieren texture

observed with the present microscope.
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5CB. It clearly shows that the performance of the present
apparatus as a polarizing microscope is on the satisfactory level
for, at least, qualitative observations of liquid-crystal tex-
tures.

When the temperature setting was changed, two to three hours
were needed for the temperature to become almost constant. And,
at a constant setting, it was observed that the readings both from
the controlling and from the monitoring thermistors were stable
within 10-3 K for indefinitely long time. It should be noted,
however, that the temperature of the sample could be different
from that of the block due to the opening which allows
illumination and observation of the sample. So, the temperature
stability at the point of liquid crystal cell was directly
assessed by measuring the birefringence of the liquid crystal,
5CB, which was planar aligned by means of glass substrates coated
with an obliquely deposited SiO film.

If a monochromatic light with wavelength A is incident on
the nematic cell of thickness d placed between crossed polarizers
(see the inset of Fig.A.4), the output light intensity I is given
by Iosin2( n.6.ndl A) + Ir, where 10 and Ir are the intensities of
the incident light and the leakage light. Since the birefringence
of 5CB varies with temperature approximately following d.6.n/dT--
2X10-2 K-1 near the clearing point, the relative change of the
output light intensity can be given by

where R is the retardation

R = 2n .6.ndlA .

So that, when sin(R/2)-<Ir/lo)1/2, this birefringence thermometer
acquires a maximum sensitivity, i.e.,
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(t..=633 nm ) , it becomes
for a 40-#m-thick cell illuminated by a He-Ne laserHence,

when the extinction coefficient Ir/Io is assumed to be 10-3. Then,
it is clear that under this condition, a temperature variation on
the order of 10-3 K can be easily resolved by this method.

Traces (a) and (b) in Fig.A.4 show the time variations of the
block temperature, as measured by the thermistor, and the sample
temperature evaluated from the birefringence of SCB in 40-#m-
thick cell, respectively. They clearly show that the temperature
of the sample as well as that of the block can be stabilized to an
accuracy better than 10-3 K for over several hours. It is also
evident from the almost simultaneous onset of an increase near the
end of those traces that the thermal contact between the sample
and the copper is satisfactorily good.
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FIG.A.4. Time variations of temperatures. (a)Copper block
temperature measured by a thermistor. (b) Optically measured
sample temperature. (c)Details of the traces, (a) and (b),
near the kinks at 6.8 h. (d)Experimental setup for optical
temperature measurement.
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Appendix 2

EQUILIBRIUM SHAPE OF

A NEMATIC DROP

In Section 6.1, we have tacitly assumed that the equilibrium
shape of a nematic drop can be determined only by the balance of
interfacial tensions satisfying Young's equation just like a drop
of an ordinary liquid. However, many of the surface and bulk
properties of nematic liquids are anisotropic; so that, it is
highly plausible that a drop of nematic, when surrounded by
foreign media, would assume a characteristic form which more or
less reflects the anisotropic nature of the nematic. Here, we
consider the factors affecting the equilibrium shape of a nematic
drop and to clarify the condition under which Young's equation can
be applied as such to a nematic drop.

The equilibrium shape is the form of a liquid domain which
minimizes the thermodynamic potential of the system under a given
external condition. In the case of an ordinary liquid, this
requirement leads to Young's equation, and in the case of a
crystalline solid, it yields the well known Wulff construction*.
In both cases, the matter of finding the equilibrium shape is
reduced to the problem of finding the shape with the minimum
surface free energy under a given volume of the drop.

In general, however, we must take into account the
superficial or volumetric elastic contributions as well, which are
connected with the presence of a boundary and are thus dependent
on the shape of the drop. The total thermodynamic potential of
the system is expressed as a sum of (1) the usual volumetric
*-----------------------------------------------------------------D.P. Woodruff, The Solid-Liquid Interface, (Cambridge,
1973), pp.9-11.
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thermodynamic potential Qvol' which depends only on the volume,
(2) the superficial free energy Qsup associated with the
interfacial tension, and (3) the elastic energy Qelas induced by
the specific boundary condition imposed at the interface of the
drop as regards the orientation and/or the translation of
molecules:

(A. 1)

The second term can be specifically written as

Q sup = f r (p) dA, (A.2)

where r(p) denotes the interfacial free energy at the point p on
the boundary, and the surface integration should be performed over
the entire interfaces in the system including the boundary of the
drop. Under the condition of the constant volume, Qvol is an
invariant independent of the shape of the drop, and hence can be
omitted in determining the equilibrium shape. The third term,
however, is negligible only some special cases leading to Young's
equation and the Wulff construction.

Before, considering the equilibrium shape of a nematic drop,
we need to note the following property of the surface or boundary
tension of a nematic liquid crystal:

The surface tension of a nematic liquid crystal is
isotropic, i.e., it does not depend on the direction along
which the surface tension is measured.

Proof: Consider the thermodynamic potential Q of the
region of the nematic as shown in Fig.A.5 held at fixed
temperature and chemical potential. Then, for the change
in Lx and Ly occurring under a fixed volume, we can write
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Hence, in order for the right-hand side to be integrable,
we should have

(A.3)

This is essentially
the surface analog of the
well-known fact that in
the bulk of a nematic
phase, the pressure
tensor is isotropic, even
though the molecules are
anisotropically oriented.
And, Eq.(A.3) also
applies to the boundary

z

y

FIG.A.S. Interfacial tensions in the
directions parallel (y-axis) and
perpendicular to the director.
The nematic liquid occupies the
half space below the x-y plane.

tension for a nematic in contact with a hard solid wall.
This isotropy should not be confused with the anisotropy
of the surface tension of nematics with respect to the
rotation of the director at the interface.

A. Large drop
Let us first imagine that the nematic drop (resting at the

isotropic-solid interface) is sufficiently large so that the
volumetric elastic energy can be neglected in comparison with the
superficial term; for a drop of linear dimension R, the
superficial term is proportional to R2, whereas the elastic term
is to R. In this case, the director configuration within the drop
is solely determined in such a way as to minimize the anchoring

in Fig.A.6,
and is shown to take a nonuniform profile as illustratedenergy,

in which a planar alignment is assumed on the
substrate surface; this configuration has also been adopted in
Chapter 6 (Fig.6.3) without a detailed discussion on its validity.
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Except at the disclination lines of topological origin, the
director is oriented along
the easy axis over the

interfaces.
superficial

~ disclinatiannematic-isotropic
nematic-solid
Therefore, the

and the

thermodynamic potential can
be written as a sum of the
free energies associated with
the interfacial tensions and
with the disclination lines.

aforementioned property of

FIG.A.6. Director configuration inside a
large cap-shaped drop resting on a planar
aligning substrate. When the boundary
condition at the nematic-isotropic interface
is conical, there in general appear two kinds
of disclination lines, one along the meridian
and the other along the circumference.

In particular, because of the

the surface tension of nematics, the interfacial tension assumes a
unique value, irrespective of the direction relative to the
director, once the phases in contact, e.g. nematic and isotropic,
are specified. Thus, as long as the effect of the disclination
lines can be ignored, the equilibrium shape of the nematic drop
can be determined in completely the same manner as that for a drop
of ordinary liquid. Consequently, we obtain a circular cap-shaped
drop satisfying Young's equation.

The condition under which the disclination effect is
negligible can be roughly worked out by the following qualitative
argument. Assuming a cap-shaped drop with a height h and a radius
r ()h) [see Fig.A.6], we can write the contribution of the
interfacial tension as

Qsup(tension) = Qsup(O) + nrni(r2+h2) + 2n(rsn-rSi)r2,
(A.4)

where Qsup(O) is a constant independent of hand r. As confirmed
by a direct calculation, minimization of the above under a
constant drop volume V=(nI6)h(3r2+h2) yields Young's equation,
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r r + r cosa r + rn1"(r
2_h2)j(r2+h2).si = sn ni = sn (A.5)

In general, there appear
two kinds of topological dis-
clination lines: one along
the meridian perpendicular to
the substrate-induced alig-
nment as observed in Chapter
6 [Fig.A.7(a)], and the other
along the three-phase contact
line resulting from the con-
flicting boundary conditions
at the nematic-isotropic and
the nematic-substrate inter-
faces [Fig.A.7(b)]. Denoting
the free energies associated
with the unit length of these disclination lines by a1 and a2,

(a)

isotropic

nemotic

(b)

isotropic

solid

FIG.A.? Director configuration around
the disclination lines shown in Fig.A.6.

respectively, we can write down the relevant part of the
superficial thermodynamic potential as

(A.6)

For simplicity, we shall replace the first term by its upper
bound: (A.7)

Clearly, this contribution acts as a line tension*, which modifies
the equilibrium condition of the drop as expressed by Young's
equation [Eq.(A.5)] to

(A.8)

*-----------------------------------------------------------------P. Tarazona and G. Navascues, J. Chem. Phys. 75, 3114(1981),
and the references therein.
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In Fig.A.7, the director configurations around the dis-
clination lines are schematically illustrated. By following the
treatment of surface disclinations due to Vitek and *Kleman , we
can obtain a rough estimate of the free energies a1 and a2. For
example, in the one constant approximation, we find

(A.9)

where K is the Frank elastic constant, de the extrapolation length
at the nematic-isotropic interface, and R the linear size of the
nematic drop. Then, we see that for samples of a realistic size
and anchoring condition, a1 is a quantity of the same order of
magnitude as K. Similarly, we readily find that a2-K.

Since rni and K are on the order of 10-SJ/m2 and 10-11N,
respectively, we can conclude from Eq.(A.8) that, only when the
radius of the nematic drop is as small as l#m, the disclination
can exhibit a significant effect in determining the equilibrium
shape. Otherwise, the drop is expected to assume a cap shape in
agreement with the microscopic observations presented in
Chapter 6.

B. Small drop
In small drops, the elastic deformations can no longer be

neglected, and the director orientation at the interface is
expected to be significantly deviated from the easy direction.
Though it is difficult to generally treat this situation, we can
formally eliminate the elastic contribution if the drop is very
small. Namely, when the drop is extremely small, the elastic
torque overwhelms that due to the interface, thereby making the
director align almost uniformly within the drop (Fig.A.8). In
this case, too, the equilibrium shape can be determined only by
the consideration of the minimum condition of the superficial free
energy.*-v~-vit~k-;~d-M~-Ki~;;~~-J~-Ph;;~-(p;;i;)-36~-59(1975)~----------
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As clear in Fig.A.8, the
interfacial tension is not
constant throughout a boun-
dary, but changes from one
point to another according to
how much the boundary direc-
tor is distorted from the
easy axis. Consequently, the
equilibrium shape is not a
simple cap shape as deter-
mined by Young's equation,
but is more structured ref-

small drop

./
(

I
...••.•.
\

'\

FIG.A.B. Equilibrium shape of a small nematic
drop on a planar aligning substrate, and the
director configuration within the drop. Due to
the curvature elasticity, the director is forced
to be uniformly aligned.

lecting the anisotropy or
equivalently the inhomogeneity of the interfacial tension. Note
that this case is essentially identical with the equilibrium shape
problem of a crystalline solid, in which the lattice structure is
preserved and the facetting which minimizes the surface free
energy is searched. The optimum facetting is produced by the
Wulff construction, and its extension to liquid crystal drops has

liebeen carried out by Chandrasekhar .
The distinction between the "large" and the "small" drops

depends on the anchoring strength at the interface. For example,
if the anchoring strength at the nematic-isotropic interface
vanishes, no such a distinction exists, and the equilibrium shape
of a nematic drop is always a cap shape determined by Young's
equation. For an infinitely strong anchorage, however, there is
no "small" drop in the above sense; this means that the director
configuration is always distorted, while not entirely negligible
in comparison with the interfacial tension. The onset of this
intermediate situation may be characterized by the point where the
*-----------------------------------------------------------------S. Chandrasekhar, in ~~Q~~~ging~Qf th~ Int~~ngtiQngl~iqYig
Q~y~tgl QQnf~~~n~~,Kent State Univ., Aug. (1965).
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elastic and the interfacial contributions become comparable.
To find out an estimate of the size of such a drop, let us compare
the interfacial free energy of a spherical drop with the radius R,

with the possible elastic deformation energy in the drop,

Then, by equating Fint and Felas' we find

R ..•....K/rni.

Using r 10-SJ/m2 and K l0-11N, we see that R l Ilm, showingnl
that in nematic drop with the size much larger than Illm, the

(A.I0)

contribution of the elastic distortion on the equilibrium shape
may be neglected.

As discussed above, the equilibrium shape of a drop of liquid
crystals is influenced both by the interfacial tension and by the
volumetric and superficial elastic distortions. Because of the
weakness of the curvature elasticity of nematics, however, the
latter effect becomes significant for drops with the radius
smaller than Illm or so, and hence the observable equilibrium
shape is determined to a good approximation by Young's equation.

As the elasticity becomes stronger as in smectics, the
elastic part is expected to play an important role. But, unless
the medium is very hard and/or the drop is small enough, the well-
known Wulff construction cannot necessarily be applied; and the
equilibrium shape must be determined via the complicated
compromise among the interfacial tension, the elasticity, both
volumetric and superficial, and the interfacial anchorage. The
wide variety of batonnet forms, which we observe upon appearance
of smectic phase in the isotropic or nematic phase, are considered
to be just of this type.
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